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Abstract

The information power grid (IPG) being developed by NASA is designed to harness, the power of geographically distributed
computers, databases, and human expertise, in order to solve large-scale realistic computational problems. This type of
a metacomputing infrastructure is necessary to present a unified virtual machine to application developers that hides the
intricacies of a highly heterogeneous environment and yet maintains adequate security. In this paper, we present a novel
latency-tolerant partitioning scheme, called MinEX, that dynamically balances processor workloads while minimizing data
movement and runtime communication, for applications that are executed in a parallel distributed fashion on the IPG. The
number of IPG nodes, the number of processors per node, and the interconnect speeds are parameterized in a simulation
experiment to derive conditions under which the IPG would be suitable for solving such applications. Experimental results
demonstrate that MinEX is an effective load balancer for the IPG when the nodes are connected by a high-speed asynchronous

interconnection network. © 2002 Published by Elsevier Science B.V.

Keywords: Information power grid; Adaptive computations; Partitioning; Dynamic load balancing; Latency tolerance

1. Introduction environment that is both ubiquitous and uniformlys2
accessible through a convenient interface. Some other
NASA and its collaborative partners are actively areas that would benefit from such a nationwide:
developing the information power grid (IPG) [20] infrastructure include: 35
to harness the vast collection of their geographi-
cally distributed resources (computers, databases,
and human expertise). Current engineering and re-
search status of the IPG project is available at
http://ww. i pg. nasa. gov. One of the pri-
mary benefits of the IPG will be to facilitate the effi-

e desktop coupling to remote resources so as to pres
vide access to large data-bases and high-end graph-
ics facilities [10]; 38

e user access to sophisticated instruments through ee-
mote connections utilizing virtual reality techniquesio

cient solution of large-scale computational problems [9]; . . . L 4
by providing a scalable, adaptive, and transparent ® Remote interactions with parallel and distributed:

' ' supercomputer simulations [11,12]. 43
* Corresponding author. Tel:1-650-604-4411; The IPG is one of the several approaches to develap

fax: +1-650-604-3957.
E-mail addresses: das@cse.uta.edu (S.K. Das), harveyd@sou.edu
(D.J. Harvey), rbiswas@nas.nasa.gov (R. Biswas).

1Tel.: +1-817-272-7405; fax:+1-817-272-3784. 2Not to be confused with computations on discretization grids.

what are calledComputational Grid? (in short, Grid) 45
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capabilities and/or implementations [16]. For exam-  In our previous work, we have developed two dife4
ple, Condor [23] was an early success in developing a ferent load balancing techniques for dynamic irregws
distributed system to manage research studies at work-lar applications. The first strategy, called PLUM [25]96
stations around the world. However, it does not ade- is an architecture-independent framework which glokys
guately deal with the security issues that are important ally partitions the computational mesh after each adaps
for a general Grid implementation. Other Grid-based tation and determines whether rebalancing the works
systems include Nimrod [1], NetSolve [4], NEOS [6], load would reduce the total execution time. If an imeo
Legion [17], and CAVERN [22]. The Globus Meta- provementin the load balance can be achieved, PLUd
computing Infrastructure Toolkit [15] has been ex- utilizes one of several remapping algorithms to mite2
tremely successful in providing a portable virtual ma- imize the required data movement. Application prass
chine environment. Mechanisms exist within Globus cessing is temporarily suspended during the partitian4
to share remote resources, provide adequate securityjng and data remapping operations. Utilization ofias
and allow MPI-based message passing. Due to its gen-parallel graph partitioner like ParMetis [21] gives exos

eral, portable, and modular nature, Globus has beentremely effective results. 107
chosen by NASA as the middleware to implementthe  The second approach, called symmetric broads
IPG. cast networks (SBNs) [7], gives a general-purpose

Till date, only a few limited studies have been per- topology-independent solution to dynamic load bako
formed at NASA Ames Research Center to determine ancing. A salient feature of the SBN-based method
the viability of large-scale parallel and distributed is that it balances processor workloads while the apz
computing on the IPG [2,13]. In [2], latency tolerance plication is running. Therefore, it is able to hide thas
and load balancing modifications were implemented high data migration overhead, albeit at the cost nf
for a computational fluid dynamics (CFD) applica- increased interprocessor communication. Results rs-
tion to compensate for the slower communication ported in [3] indicate that both PLUM and SBN havee
speed between two IPG computers (nodes). Resultstheir relative merits, and that they achieve excellent
showed that the application actually ran faster under load balance with minimal extra overhead. 118
Globus on two nodes of four processors each than on In this paper, we propose a novel partitioner, called
a single tightly coupled machine of eight processors. MinEX, that optimizes the two important steps abo
However, this result is clouded in that asynchronous PLUM (namely, balancing and remapping) as parh
message passing was supported over the wide areeof the partitioning process. Instead of attempting tee
network but not within the single platform. The re- merely balance the load and reduce the runtime ins
sults presented in [13] demonstrated the feasibility of terprocessor communication like most other partitiores
parallel distributed computing on homogeneous IPG ers, the objective of MIinEX is to minimize the toi2s
testbeds, but performance was significantly affected tal runtime of the application. This approach coumzs
by increased communication times. The paper con- ters the possibility that perfectly balanced loads withr
cluded that poorer connectivity and larger latencies minimal communication can still incur excessive rezs
due to geographical separation in a realistic IPG en- distribution costs for adaptive applications. MinEX ig9
vironment could further impact overall performance. also used to experiment with latency tolerant tectse

With a goal to make more informative conclusions niques for the IPG. Our experimental results show that
regarding the latency tolerance and load balancing MinEX reduces the workload migrated by PLUM, and2
performance of parallel distributed computational ap- lowers the communication cost over partitions geness
plications on the IPG, in this paper, we simulate an ated by SBN. For example, for 32 partitions with ouss
unsteady adaptive mesh problem on a wide area net-test case, PLUM showed an edge cut (reflecting the
work. The number of nodes, the number of processors communication overhead) of 10.9% and redistributed
per node, and the interconnect speeds between node$3,270 mesh elements. The corresponding numhers
are all parameterized to derive general conditions un- for the SBN-based approach were 36.5% and 19,448.
der which such an infrastructure would be suitable for In contrast, the MinEX partitioner values were 20.9%9
parallel distributed processing of this class of applica- and 30,548, respectively, while maintaining comparae
tions. ble load balance. Thus, MinEX attempts to optimize1
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both communication and remapping costs, and can be
an effective latency hiding technique in dynamic load
balancing for Grid computing applications. A prelim-
inary version of this paper appeared in Ref. [8].

The remainder of this paper is organized as follows.
Section 2 introduces the dynamic irregular computa- *
tional application used as the test case for our exper-
iments, and describes the various graphs and metrics
that model the problem. Section 3 presents the new
MInEX partitioner and gives implementation details.
Performance results are reported and analyzed in Sec- *
tion 4. Finally, Section 5 summarizes our key conclu-
sions as to the viability of MinEX and the IPG for this
class of applications.

2. Preliminaries
Fig. 1. Initial and adapted meshes (after levels 1 and 5) for the
In this section, we describe our computational test Simulated experiment.
case, and the various graphs and metrics utilized to

model the problem and evaluate MinEX. are coarsened in its wake. During the processing, the
size of the mesh increases from 50,000 elementsido

2.1. Computational test case 1,833,730 elements. 187
Many computational problems are often modeled 2.2, Graph models 188

discretely as an unstructured mesh of vertices and
edges. To capture evolving features, the mesh topol- In our experiments, a dual graph representationied
ogy is also frequently adapted. For an efficient par- the initial mesh is used for load balancing where each
allel implementation, this requires dynamic load bal- original tetrahedron is a vertex of the graph. An edga
ancing in the sense that mesh objects usually haveexists between two dual graph vertices if the came
to be reassigned after each adaptation phase to rebaltesponding elements share a face. Mesh refinement
ance the workload among the processors. It is critical consists of subdividing parent tetrahedral elemenis
to minimize the overhead associated with remapping into two, four, or eight subelements in specified ress
data sets, and to reduce the communication betweengions of the mesh. Subsequent refinements can figs-
processors during the subsequent solution step. Theseher split the child elements, thereby forming a res?
goals are particularly important in the context of the finement tree of tetrahedra for each original mesés
IPG where communication bandwidth between nodes element. 199
are likely to be much smaller than those within a sin-  To realistically simulate the overhead associatem
gle node (i.e., multiprocessor machine). with such an adaptive mesh computation, weights ace
The computational mesh considered for our experi- associated with the vertices and edges of the dewl
ments in this paper simulates an unsteady environmentgraph. Each vertexy has two weights,Pwgt,and 203
with a strongly time-dependent adapted region. As de- Rwgt, while each edge(v,w) has one weight, 204
picted in Fig. 1, a shock wave is propagated through Cwgt, ). These weights respectively model the assmns
an initial tetrahedral grid to produce the desired effect. ciated computational processing, data remapping, aved
This grid is processed through nine adaptations by runtime interprocessor communication coftsgt, is 207
moving a cylindrical volume across the domain with proportional to the number of leaves in the refinemexng
constant velocity. Grid elements within the cylindrical tree because only those elements participate in the
volume are refined, while previously refined elements actual calculation. HoweveRwgt, is proportional to 210
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the total number of elements in the refinement tree be- o
cause the entire tree must be relocated when the root is
reassigned to another processor. Finglygt, ., de-
pends on the number of leaf faces between dual graph
verticesv andw.

To predict performance on a variety of distributed
architectures, a configuration graph is utilized. Each
vertex in this fully connected graph represents a
tightly coupled cluster of processors, while edges
denote cluster interconnects. For the experiments re-
ported here, we assume that all processors in a single
cluster (node) are homogeneous and that there is
a constant bandwidth for intra-cluster communica-
tion. Vertexc in the configuration graph has weight
Proc. > 1 that represents the processing slowdown
factor for the corresponding cluster. Similarly, the
edge weightConn.. 4y > 1 represents the intercon-
nect slowdown factor when a processor in cluster
communicates with a processor in another clugter e
If ¢ = d, Conn, is the slowdown associated with
communication between processors in the same clus-
terc. Note that if any of these weights are unity, there
is no slowdown (ideal conditions).

2.3. Metrics °

The following three metrics respectively measure
the number of time units required for computation,
communication, and remapping. The total time re-
quired to process the elements assigned to processor
p in clusterc must take into account all of them. *

e Processing cost: Wgt! is the computational cost to
process dual graph vertexassigned to processpr
which is in clusterc:

Wot? = Pwgt, x Proc,. ®

e Communication cost: Comm, is the communication
cost to interact with all verticesy adjacent tov
whose data sets are not localggassuming thab
is assigned tq):

COI’I’IYT'I{)J = Zngt(v,w) X Conn(c,d),
w

wherec andd are the clusters containing the pro-
cessors to which andw are respectively assigned.
Obviously, if the data sets of all vertices adjacent to
v are also assigned fm thenComm}, = 0.

below.

Redistribution cost: Remap! is the overhead to copyzss
the data set associated withto another processorsa4
from p: 255
Remap! = Rwgt, x Conn 4y, 256
wherec andd are the clusters containing the sourcsr
and destination processors foNote that the redis-2ss
tribution cost incurred ap includes the operationsso
of packing data and initiating transmission, whilsso
the cost incurred by the processor receivings 261
the sum of the communication time and the cost st
unpacking and merging the data into existing date
structures. ClearlyRemap!, = 0 if the data set for 264
v is already assigned fa 265

Five additional metrics used in this work are definess
267

Weighted queue length: Qugt? is the total cost to 268
process all vertices assigned t: 269

Qugt” =) " (Wgt? + Commy + Remap?).

7 270

Total system load: QwgtTot is the cost to process7i
the entire application: 272

QugtTot = » "Qugt”.
p

273

Heaviest load: MaxQugt indicates the total time274
required to process the application: 275

MaxQuwgt = maxQugt?. 5
P 76

Lightest load: MinQuwgt indicates the workload of277
the most lightly loaded processor: 278

MinQuwgt = mpin Quagt?. 279
Load imbalance factor: Loadlmb represents the2so
quality of the partitioning: 281

MaxQuwgt

Loadimb = P x ———,
QuagtTot

282

where P is the total number of processors in thmss
configuration graph. 284
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3. MIinEX: a new partitioner the mesh, the contraction step requiresA)@ubsteps 330
which is asymptotically equal to the complexity ofs1
Previous studies with the test application (described contracting the mesh sequentially in halves. 332
in Section 2.1) under PLUM utilized a variety of Once the mesh is sufficiently contracted, the ress
general-purpose partitioners such as ParMetis [21], maining vertices are reassigned according to the pae-
UAMetis [26], DAMetis [26], Jostle-MS [27], and titioning criteria described in Section 3.3. 335
Jostle-MD [27]. Note that UAMetis, DAMetis, and Finally, the mesh is expanded back to its originads
Jostle-MD are diffusive schemes designed to mod- size through a refinement process. As each vertexsis
ify existing partitions to produce a processor allo- reinstated, a decision is made as to whether or natsit
cation, whereas ParMetis and Jostle-MS are global should be reassigned. This decision employs the same
from-scratch partitioners which make no assumptions criteria as used by the partitioning algorithm. Note thatb
about the original distribution of the mesh. Although each coarse vertex reassignment, in effect, reassigns
all these partitioners achieve good load balance while all of the original dual graph vertices that the coarse

minimizing communication overhead, they fail to vertex represents. 343
consider the cost of moving data between proces-
sors. A unique feature of PLUM is to address this 3.2. Latency tolerance 344
drawback through the use of an efficient heuristic for
redistributing data to assigned processors. Our MInEX patrtitioner can interact via a usersss

In the following subsections, we design, implement, defined function to accommodate any latency tahe
and analyze a novel partitioner, called MIinEX, that erance that a mesh application may possess. Bhe
optimizes computational, communication, and data following steps illustrate how the application can bes
remapping costs. We also redefine the partitioning programmed so that MinEX eliminates (or at leasto
goal from producing balanced workloads to minimiz- reduces) communication and data redistribution costs.
ing theMaxQuwgt metric. No direct comparisons with
other existing partitioners mentioned above were fea-
sible since MinEX also considers the data redistribu-
tion cost while partitioning the computational mesh.

Step 1 Initiate send of all computational data sets that
are to be redistributed to other processors. 352
Step 2 For each edge, w), where the data set forsss
vertex v is local to processop and the datass4
set for vertexw is local to another processoess
g, initiate send of communication data. Alsess
initiate send of communication data needed by~

3.1. General design principles

MIinEX can be classified as a diffusive multilevel

. e . . ; adjacent processors. 358
partitioner. Diffusive algorithms [5] utilize an exist- . .
. o : o o Step 3 Process vertices that are not waiting for assy
ing partition as a starting point instead of partitioning . : o
. - . incoming transmissions. 360
from scratch. The multilevel approach, originally in- .
. . X . Step 4 Receive and unpack any remapped computa-
troduced in [19], partitions a graph into three steps: . :
. oo ; tional data sets destined for procespor 362
contraction, partitioning, and expansion—each of . o
C : Step 5 Receive and unpack communication data des-
which is described below. . .
- : - ) tined for this processor. 364
Similar to other multilevel partitioners, the first step . .
Lo . . Step 6 Repeat Steps 2-5 until all vertices are poes
in MinEX is to contract the mesh to a reasonable size. cessed a6

However, instead of repeatedly contracting the mesh in
halves as is common with other multilevel partitioners,  These steps implement a strategy where processers
MIinEX sequentially contracts one vertex at a time. distribute computational and communication data &s
The advantage of this approach is that a decision canearly as possible. Internal vertices can then be s®o-
be made each time and a vertex is later refined as toviced while waiting for expected incoming messageso
whether it should be assigned to another processor.As information is received, additional communicav1
This makes the algorithm more flexible since the graph tions can be initiated and vertices processed. The most
does not have to be doubled in size before this decision optimistic view of this strategy is that the processirgs
could be made. If\]] is the number of vertices in  activity can entirely hide the data redistribution costs
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and communication latency. At the other extreme, the
most pessimistic view is that no latency tolerance is
achieved. To analyze the effect of latency tolerance
on our test application, experiments simulating both
possibilities are described in Section 4.

ues will have largeMinvar components, this cri-399
teria tends to move vertices away from processaus
that have high runtime requirementsMinVar is 401
the change ilMinvar after moving a vertex from4o2
one processor to another. A negative value indicates

thatMinVar has been reduced. 404

3.3. Partitioning criteria The partitioning decisions are made as follows. Fgj

each vertex, consider all adjacent vertices assignggs

The criteria for deciding whether a vertex should be o oth c . 4 Minva
reassigned from one processor to another is based on© OMEr Processars. L.ompute N andMinvar 407

two metrics:Gain andMinVar. These are obtained as  Y2IUes that would result from moving to each of 4o
follows: these adjacent processors. The vertex moved is the gge

with the smallestGain, and satisfiesAMinvVar < 0 410

e Gain represents the change @uwgtTot that would and—Gain/AMinVar < ThroTTle, whereThroTTleis 41
result from a proposed vertex move. A negative a user-supplied parameter. To increase efficiency, we
value indicates that less total processing is required use a minimum heap with pointers to vertex locatiops,
after such a vertex reassignment. The partition- in order to rapidly find the best migration and directly,
ing algorithm favors vertex moves with negative remove entries without searching. 215
or small Gain values that reduce or minimize the ConceptuallyThroTTle acts as a gate that limits in4g
overall system load. creases irzain based upon how much of an improvey;;

e MinVar measures the variance of processor work- ment inMinVar can be achieved. Table 1 shows howis
loads from that of the most lightly loaded processor. varyingThroTTle affects the expected application rungg

It is computed using the workload for each proces- time (MaxQuwgt) and load balance qualitg.¢adimb), 4,0
sorp and the smallest load over all processors: assuming maximum latency tolerance. THaxQuwgt 45,

. » . 2 entries are non-dimensionalized values in thousangs,
MinVar = Z(ngt — MinQugn)“. and were obtained by running the experiments dg;

P scribed in Section 4. Table 1 results are for a network

The objective is to initiate vertex moves that lower of P = 32 homogeneous processors distributed oves
this value. Since processors with larQa)gt” val- 1-8 IPG nodes (clusters). The inter-cluster intercopg

Table 1
Expected runtime and load balance quality with maximum latency tolerance for vargiogTle values andP = 32

Metric Clusters ThroTTle values
0 1 4 16 32 64 128 00
MaxQuwgt 1 1993 1427 312 291 300 306 312 324
2 1847 1142 467 320 304 305 318 345
3 2035 1801 556 375 331 324 326 382
4 1868 1516 639 412 352 328 371 425
5 1834 1626 767 438 373 359 343 400
6 2081 1579 825 481 391 357 361 427
7 1884 1279 758 505 383 371 369 414
8 1944 1451 834 531 434 376 380 435
Loadlmb 1 7.05 5.09 1.11 1.01 1.00 1.00 1.00 1.00
2 8.54 4.16 1.81 1.26 1.14 1.04 1.00 1.00
3 7.15 6.40 211 1.41 1.19 1.05 1.02 1.01
4 6.63 541 2.40 1.58 1.26 1.07 1.03 1.01
5 6.53 5.78 2.83 1.66 1.30 111 1.02 1.01
6 7.31 5.58 2.99 1.81 1.40 1.08 1.02 1.01
7 6.68 4.61 2.80 1.84 1.33 1.10 1.03 1.00
8 6.90 5.15 3.05 1.94 1.43 1.13 1.06 1.00
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nect speed is assumed to be a third of the intra-cluster
speed. Observe th@hroTTle = 64 produces the low-
est overalMaxQuwgt, and that largeThroTTle values
improve Loadlmb. Experiments with other network

sizes using these same application have shown that

ThroTTlegenerally converges at values betw@&smnd
2P. Note also that for large values ®hroTTle, better
Loadlmb does not necessarily imply lowstaxQuwat.

3.4. Data structures

We give here a brief description of the data struc-
tures used for implementing the multilevel MinEX
partitioner:

Mesh. The adaptive mesh, represented{|ds|, |E|,
vTot, *VMap, xVLigt, xEList}, where Y/ is the num-
ber of active verticesE| the number of edges;Tot
the total vertex count (including merged vertices),
xVMap is a pointer to the list of active vertices,
xVList is a pointer to the complete list of vertices,
andxEList is a pointer to the list of edges.

VMap. The list of active vertices (those that have not
been compressed during multilevel partitioning).
VList. The complete list of vertices. Each vertex

v is represented afPwgt,, Rwgt,, |e|, xe, merge,
lookup, xvmap, xHeap, border}, where Pwgt, is

the computational cost to process Rwgt, the
redistribution cost to copy the data set associated
with v, |e| the number of edges incident op«eis a
pointer to the first incident edge (subsequent edges
are stored contiguouslyinerge the vertex that was
merged withv during a contraction operation (set
to —1 if not merged),lookup is the active vertex
that containg after a series of contractions (set to
—1 if not merged)xvmap is a pointer to the posi-
tion of v in VMap, xHeap is a pointer tov’s heap
entry and represents a potential reassignment of
and border is a boolean flag indicating whether

is adjacent to vertices assigned to other processors.

EList. The list of edges in the mesh. Each vertex
v in VList points to its first edge irEList using
x€. Each edge record is defined fas, Cwgt(y,w)},
wherew is a vertex adjacent to andCwgt, ., the
communication weight associated with this edge.
Heap. The heap of potential vertex reassignments.
Each heap record is defined @3ain, AMinVar, v,
p} which specifies theGain and AMinVar that

would result from reassigning vertexto processor 472
p. The min-heap is keyed by th&ain value. 473
Sack. The stack of collapsed edgés, w). These 474
pushed edges are refined in an order reversed from
the one in which they were compressed. This graph
contraction technique is described in the next sec?
tion. 478
3.5. Graph contraction 479
MinEX randomly selects a set of adjacent vertexo
pairs that are assigned to the same processor. Frem
this set, the vertex paitv, w) that has the largestss2
Cwot(,w)/(Rwgt, + Rwgt,,) value is merged. Thisass
formula attempts to find edges with large communices4
tion costs while minimizing the potential data redistriss
bution overhead. The motivation behind this strategps
is to arrive at a contracted mesh with a small edge esit
as well as a small data distribution cost. 488
To collapse the edgé, w), a merged verteM is 489
generated. The edges incident bhare created by 490
utilizing the edge lists of vertices andw. VMap is 491
adjusted to contaitl and to removey and w; |V] is 492
decremented andTot is incremented;g| is increased 493
by the number of edges created fd; and the pair 494
(v, w) is pushed ont@&ack. The entire process is re49s
peated until the graph is sufficiently contracted. 49
This contraction procedure is implemented using:e
set Union/Find algorithm so that edges of unmerges
vertices remain unchanged. For example, if an umns
merged vertex is adjacenti#paccesses to iEList will 500
check whethev has been merged. If it hdspkup will  so1
quickly find the appropriate merged vertexldbkup 502
is not current (i.e.Jookup > vTot), the Union/Find 503
algorithm will search the chain of vertices beginnirgg4
with merge in order to updatéookup, so that subse-sos
guent queries can be done efficiently. The pseudo-cede
describing the Union/Find procedure is given in Fig. &7
3.6. Partitioning the contracted graph 508
The partitioning is performed when the graph cosss
traction process is complete. MinEX partitioning isio
efficient because the number of vertices is greatly ee:
duced. The algorithm considers every vertex of the
coarse mesh to find potential reassignments that will
reduceGain andMinVar as described in Section 3.3514
All potential vertex reassignments are added to the
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procedure Find (v)
if (merge = -1) return (v)

if ((lookup # —1) and (lookup < vTot))
then return (lookup = Find (lookup))
else return (lookup = Find (merge))

Fig. 2. Pseudo-code for the Union/Find algorithm.

min-heap, and executed in heap order. After each re-
assignment, the heap is adjusted to reflect the new par-cluster interconnections.

tition.
3.7. Graph expansion

The graph is restored to its original size by ex-
panding pairs of vertices in an order reversed from
which they were merged. Ti&ack data structure con-
trols the order. As pairs of verticés, w) are refined,
merged edges and vertices are deallocated ndnge
andlookup values are also adjusted WList. The list
VMap of active vertices is updated to delete the merged
vertexM, and to add andw; |V] is incremented and
vTot is decremented; ané]|is decreased by the num-
ber of edges created fdd. After each refinement, it
is checked whether a partition can be improved by re-
assigningv or w. When reassignments are made, ad-
jacent border vertices are also considered.

4. Performance results

In the experimental study presented below, two ex-

treme cases are considered. The first is the most opti-

mistic view in which processing activity can entirely
hide the data set redistribution and communication la-

ing runtime, and simulated high- and low-bandwidthsso
551
Based on performance studies reported in [14,2¢5;
typical communication latencies and bandwidth slowss
downs from integrated clusters to configurations caoss4
nected through a high-speed interconnect are in the
range 3-100. Wide area network connections are tggs
ically 1000-10,000 times slower than the internal igs7
traconnects of a single cluster. In our experiments, @8
normalized the intra-cluster communication speeds
unity. Simulations of inter-cluster communication aseo
sumed slowdown factors of 3, 10, 100, and 1000. §a
simplify the analysis, we also assumed that individusmab
processors are homogeneous and divided as evenlysas
possible among the clusters. 564
Table 2 shows results of experimental runs analyas
ing the effect of varying numbers of clusters and intews
connect speeds, fa? = 32 homogeneous processoks?
andThroTTle = 64. The interconnect speeds indicates
the slowdown factor relative to the intra-cluster comss
munication speed. Results are presented both whken
no latency tolerance is achieved, and also with maxi
mum latency tolerance. To be consistent with Tablest?
runtimes are shown as non-dimensionalized valuesia
thousands. The following conclusions can be drawn
from these experiments. 575
As the interconnect speed is reduced, the slowdosva

tency. The second case, on the other hand, is the mostexperienced by utilizing additional clusters increases
pessimistic view where no latency tolerance can be dramatically. For example, the runtime metric with reys
achieved. latency tolerance as shown in Table 2 is 4102 whemn
The MInEX partitioner was executed with the com- two clusters and an interconnect slowdown of 106&
putational test case (described in Section 2.1) that is assumed; however, the metric is 93,566 when eight
simulates an adaptive mesh calculation. A variety of clusters are assumed. Thus, performance deteriorates
system configurations was evaluated. Individual runs by almost a factor of 22.8. Instead, if we consider ags
model networks with varying number of processors interconnect slowdown of 3, the performance degtas4
(P), number of IPG nodes/cluster€)( ThroTTle val- dation is only 1.3. The same pattern also holds tres
ues, and interconnect slowdown. (In our experi- when maximum latency tolerance is assumed. 586
ments,P ranged from 2 to 204& from 1 to 8, ThroT- We can compare the effectiveness of latency teés
Tle was varied to find the optimal value for minimiz- erant algorithms to those without latency toleraness
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Table 2
Expected runtimeMaxQuwgt) without and with latency tolerance for varying interconnect slowdowhs; 32, andThroTTle = 64
Case Clusters Interconnect slowdowns
3 10 100 1000
No latency tolerance 1 507 507 507 507
2 728 863 1228 4102
3 755 1168 2783 18512
4 791 1361 3667 25040
5 854 1649 5677 53912
6 915 1717 8521 76169
7 956 1915 10958 80568
8 968 2178 11492 93566
Maximum latency tolerance 1 306 306 306 306
2 305 469 763 3941
3 324 548 2386 12705
4 328 680 3297 21888
5 359 768 4369 33092
6 357 856 5044 52668
7 371 893 5480 61079
8 376 1048 5721 61321
Table 3
Expected runtime and load balance quality without and with latency tolerance for varying number of prodess8rendThroTTle = 2P
Case Processors MaxQugt Loadimb
c=1 Cc=8 c=1 Cc=8
No latency tolerance 2 4526 1.00
4 2922 1.00
8 1568 2518 1.00 1.01
16 910 1493 1.00 117
32 507 968 1.01 1.48
64 276 563 1.05 1.69
128 169 405 1.19 2.42
256 131 253 1.66 2.80
512 111 214 2.47 4.69
1024 105 214 4.16 8.95
2048 102 170 7.47 14.33
Maximum latency tolerance 2 3782 1.00
4 2014 1.00
8 1089 1245 1.00 1.00
16 589 661 1.00 1.00
32 306 376 1.00 1.13
64 158 246 1.01 1.39
128 85 176 1.05 1.98
256 73 124 1.60 2.77
512 61 103 2.47 4.14
1024 55 95 4.04 7.79

2048 60 86 8.14 13.43
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by measuring runtimes of each approach as the num-interconnect slowdown of 10, the corresponding fag»
ber of clusters and interconnect speeds are varied.tors are 1.6, 1.8, 2.1, 2.0, 2.1, 2.0, 2.1, and 2.1. In this
The performance improvements using latency toler- case, results somewhat surprisingly demonstrate that
ance increase dramatically as the number of clusterslatency tolerance has a bigger payoff when intercaogs
increases. This can be verified by comparing corre- nect slowdowns are smaller. Additional investigatiogs;
sponding rows in Table 2. For example, consider the are required to verify/counter this observation. 617
results with eight clusters. The runtime improvements  For our class of applications, the IPG could be a \irg
comparing latency tolerant algorithms to those with able environment if a high-speed interconnect (slogy
no latency tolerance are factors of 2.7, 2.1, 2.0, and down factor between 3 and 10) between clustersgjg
1.5, respectively, for interconnect slowdowns of 3, 10, available. Results in Table 2 comparing 1 and 8 clys;
100, and 1000. In contrast, results with two clusters ters with an interconnect slowdown of 3 show runtine2
indicate gains of 2.4, 1.8, 1.6, and 1.0, respectively, deterioration factors of 1.24 and 2.04 with and witlzs
for the same interconnect slowdowns. These results out latency tolerance, respectively. Similar compag,
clearly demonstrate that utilizing more clusters give isons for an interconnect slowdown of 10 show detesbs
greater runtime improvement when employing latency oration factors of 3.65 and 4.60. These factors, beigg
tolerance. smaller than the number of clusters, indicate a relatase
The same is also true when the interconnect slow- speedup when the number of clusters increases. g4
downs are varied (this can be analyzed by comparing Table 3 presents simulation results when the gy
the corresponding columns in Table 2). For example, tal number of processois varied, for interconnectgsg
with an interconnect slowdown of 1000, the runtime slowdown! = 3 andThroTTle = 2P. Both the ex- 631
improvement factors when utilizing latency tolerance pected runtimeNlaxQwgt) and the load balance qualgs;,
are 1.6, 1.0, 1.5, 1.1, 1.6, 1.4, 1.3, and 1.5, respec-ity (Loadimb) with and without latency tolerance args;
tively, for 1-8 clusters. On the other hand, with an reported, but only for 1 and 8 clusters. The perfays,

Table 4

Expected runtime and load balance quality without and with latency tolerance for varying number of prodess8rsThroTTle = 2P,
and no partitioning

Case Processors MaxQugt Loadlmb
c=1 Cc=8 c=1 c=8
No latency tolerance 2 6621 1.80
4 5434 2.57
8 3624 4712 2.81 2.70
16 2825 3739 3.22 3.34
32 1725 2207 3.37 3.45
64 964 1294 3.50 3.78
128 663 868 4.10 4.50
256 407 524 4.38 4.87
512 392 503 8.17 8.77
1024 353 431 13.54 13.45
2048 247 304 17.74 17.80
Maximum latency tolerance 2 6561 1.81
4 5125 2.63
8 3142 3142 2.97 2.95
16 1832 1910 3.10 3.05
32 1036 1265 3.27 3.52
64 560 776 341 3.93
128 364 516 4.07 4.69
256 205 328 4.24 5.35
512 198 317 7.93 9.53
1024 178 281 13.08 14.61

2048 128 199 17.56 19.23
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mance ratio between the two cluster configurations re- nected by a high-speed asynchronous interconnectign
mains roughly constant across all processor counts. Sonetwork. Otherwise, applications would have to has&
too does the ratio between maximum and zero latency little runtime communication and data set remappieg
tolerance. Note that generally near optimal results are overhead for low-speed wide area networks to be pragz
obtained whermhroTTle is set to a value of 2; how- tical interconnects. For details on other applicatiorsss
ever, whenThroTTle = 3P for P = 1024 andC = 8, see [18]. Implementing a parallel version of MinEXss
MaxQuwgt andLoadlmb both improve to 188 and 7.22, and conducting a rigorous mathematical analysis ase
respectively (compared to 214 and 8.95 as reported in part of our future work. Finally, real distributed expers?

Table 3).

application. The benefits of using more processors
begins to decrease beyor®l = 128 as is evident
from the MaxQuwgt values. The quality of load bal-
ance also deteriorates rapidly wheén> 256. This is
because the problem size for our test application does
not increase withP but is fixed at 50,000 elements
(see Section 2.1).

Finally, to evaluate the effectiveness of MIinEX

versus the case where no partitioning is done, addi- References

tional experiments were conducted. These results are
reported in Table 4 where the settings are identical
to those in Table 3 except that the MIinEX partitioner
was not invoked. As expected, the quality of load
balance is severely affected, even for small numbers
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