
U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

Future Generation Computer Systems 857 (2002) 1–13

MinEX: a latency-tolerant dynamic partitioner3

for grid computing applications4

Sajal K. Dasa,1, Daniel J. Harveyb, Rupak Biswasc,∗5

a Department of Computer Science and Engineering, The University of Texas at Arlington, GPO Box 13886, Arlington, TX 76019, USA6
b Department of Computer Science, Southern Oregon University, Ashland, OR 97520, USA7

c NASA Advanced Supercomputing Division, NASA Ames Research Center, Moffett Field, CA 94035, USA8

Abstract9

The information power grid (IPG) being developed by NASA is designed to harness, the power of geographically distributed
computers, databases, and human expertise, in order to solve large-scale realistic computational problems. This type of
a metacomputing infrastructure is necessary to present a unified virtual machine to application developers that hides the
intricacies of a highly heterogeneous environment and yet maintains adequate security. In this paper, we present a novel
latency-tolerant partitioning scheme, called MinEX, that dynamically balances processor workloads while minimizing data
movement and runtime communication, for applications that are executed in a parallel distributed fashion on the IPG. The
number of IPG nodes, the number of processors per node, and the interconnect speeds are parameterized in a simulation
experiment to derive conditions under which the IPG would be suitable for solving such applications. Experimental results
demonstrate that MinEX is an effective load balancer for the IPG when the nodes are connected by a high-speed asynchronous
interconnection network. © 2002 Published by Elsevier Science B.V.
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1. Introduction21

NASA and its collaborative partners are actively22

developing the information power grid (IPG) [20]23

to harness the vast collection of their geographi-24

cally distributed resources (computers, databases,25

and human expertise). Current engineering and re-26

search status of the IPG project is available at27

http://www.ipg.nasa.gov. One of the pri-28

mary benefits of the IPG will be to facilitate the effi-29

cient solution of large-scale computational problems30

by providing a scalable, adaptive, and transparent31

∗ Corresponding author. Tel.:+1-650-604-4411;
fax: +1-650-604-3957.
E-mail addresses: das@cse.uta.edu (S.K. Das), harveyd@sou.edu
(D.J. Harvey), rbiswas@nas.nasa.gov (R. Biswas).

1 Tel.: +1-817-272-7405; fax:+1-817-272-3784.

environment that is both ubiquitous and uniformly32

accessible through a convenient interface. Some other33

areas that would benefit from such a nationwide34

infrastructure include: 35

• desktop coupling to remote resources so as to pro-36

vide access to large data-bases and high-end graph-37

ics facilities [10]; 38

• user access to sophisticated instruments through re-39

mote connections utilizing virtual reality techniques40

[9]; 41

• Remote interactions with parallel and distributed42

supercomputer simulations [11,12]. 43

The IPG is one of the several approaches to develop44

what are calledComputational Grid 2 (in short, Grid) 45

2 Not to be confused with computations on discretization grids.

1 0167-739X/02/$ – see front matter © 2002 Published by Elsevier Science B.V.
2 PII: S0167-739X(01)00073-5
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capabilities and/or implementations [16]. For exam-46

ple, Condor [23] was an early success in developing a47

distributed system to manage research studies at work-48

stations around the world. However, it does not ade-49

quately deal with the security issues that are important50

for a general Grid implementation. Other Grid-based51

systems include Nimrod [1], NetSolve [4], NEOS [6],52

Legion [17], and CAVERN [22]. The Globus Meta-53

computing Infrastructure Toolkit [15] has been ex-54

tremely successful in providing a portable virtual ma-55

chine environment. Mechanisms exist within Globus56

to share remote resources, provide adequate security,57

and allow MPI-based message passing. Due to its gen-58

eral, portable, and modular nature, Globus has been59

chosen by NASA as the middleware to implement the60

IPG.61

Till date, only a few limited studies have been per-62

formed at NASA Ames Research Center to determine63

the viability of large-scale parallel and distributed64

computing on the IPG [2,13]. In [2], latency tolerance65

and load balancing modifications were implemented66

for a computational fluid dynamics (CFD) applica-67

tion to compensate for the slower communication68

speed between two IPG computers (nodes). Results69

showed that the application actually ran faster under70

Globus on two nodes of four processors each than on71

a single tightly coupled machine of eight processors.72

However, this result is clouded in that asynchronous73

message passing was supported over the wide area74

network but not within the single platform. The re-75

sults presented in [13] demonstrated the feasibility of76

parallel distributed computing on homogeneous IPG77

testbeds, but performance was significantly affected78

by increased communication times. The paper con-79

cluded that poorer connectivity and larger latencies80

due to geographical separation in a realistic IPG en-81

vironment could further impact overall performance.82

With a goal to make more informative conclusions83

regarding the latency tolerance and load balancing84

performance of parallel distributed computational ap-85

plications on the IPG, in this paper, we simulate an86

unsteady adaptive mesh problem on a wide area net-87

work. The number of nodes, the number of processors88

per node, and the interconnect speeds between nodes89

are all parameterized to derive general conditions un-90

der which such an infrastructure would be suitable for91

parallel distributed processing of this class of applica-92

tions.93

In our previous work, we have developed two dif-94

ferent load balancing techniques for dynamic irregu-95

lar applications. The first strategy, called PLUM [25],96

is an architecture-independent framework which glob-97

ally partitions the computational mesh after each adap-98

tation and determines whether rebalancing the work-99

load would reduce the total execution time. If an im-100

provement in the load balance can be achieved, PLUM101

utilizes one of several remapping algorithms to min-102

imize the required data movement. Application pro-103

cessing is temporarily suspended during the partition-104

ing and data remapping operations. Utilization of a105

parallel graph partitioner like ParMetis [21] gives ex-106

tremely effective results. 107

The second approach, called symmetric broad-108

cast networks (SBNs) [7], gives a general-purpose109

topology-independent solution to dynamic load bal-110

ancing. A salient feature of the SBN-based method111

is that it balances processor workloads while the ap-112

plication is running. Therefore, it is able to hide the113

high data migration overhead, albeit at the cost of114

increased interprocessor communication. Results re-115

ported in [3] indicate that both PLUM and SBN have116

their relative merits, and that they achieve excellent117

load balance with minimal extra overhead. 118

In this paper, we propose a novel partitioner, called119

MinEX, that optimizes the two important steps of120

PLUM (namely, balancing and remapping) as part121

of the partitioning process. Instead of attempting to122

merely balance the load and reduce the runtime in-123

terprocessor communication like most other partition-124

ers, the objective of MinEX is to minimize the to-125

tal runtime of the application. This approach coun-126

ters the possibility that perfectly balanced loads with127

minimal communication can still incur excessive re-128

distribution costs for adaptive applications. MinEX is129

also used to experiment with latency tolerant tech-130

niques for the IPG. Our experimental results show that131

MinEX reduces the workload migrated by PLUM, and132

lowers the communication cost over partitions gener-133

ated by SBN. For example, for 32 partitions with our134

test case, PLUM showed an edge cut (reflecting the135

communication overhead) of 10.9% and redistributed136

63,270 mesh elements. The corresponding numbers137

for the SBN-based approach were 36.5% and 19,446.138

In contrast, the MinEX partitioner values were 20.9%139

and 30,548, respectively, while maintaining compara-140

ble load balance. Thus, MinEX attempts to optimize141
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both communication and remapping costs, and can be142

an effective latency hiding technique in dynamic load143

balancing for Grid computing applications. A prelim-144

inary version of this paper appeared in Ref. [8].145

The remainder of this paper is organized as follows.146

Section 2 introduces the dynamic irregular computa-147

tional application used as the test case for our exper-148

iments, and describes the various graphs and metrics149

that model the problem. Section 3 presents the new150

MinEX partitioner and gives implementation details.151

Performance results are reported and analyzed in Sec-152

tion 4. Finally, Section 5 summarizes our key conclu-153

sions as to the viability of MinEX and the IPG for this154

class of applications.155

2. Preliminaries156

In this section, we describe our computational test157

case, and the various graphs and metrics utilized to158

model the problem and evaluate MinEX.159

2.1. Computational test case160

Many computational problems are often modeled161

discretely as an unstructured mesh of vertices and162

edges. To capture evolving features, the mesh topol-163

ogy is also frequently adapted. For an efficient par-164

allel implementation, this requires dynamic load bal-165

ancing in the sense that mesh objects usually have166

to be reassigned after each adaptation phase to rebal-167

ance the workload among the processors. It is critical168

to minimize the overhead associated with remapping169

data sets, and to reduce the communication between170

processors during the subsequent solution step. These171

goals are particularly important in the context of the172

IPG where communication bandwidth between nodes173

are likely to be much smaller than those within a sin-174

gle node (i.e., multiprocessor machine).175

The computational mesh considered for our experi-176

ments in this paper simulates an unsteady environment177

with a strongly time-dependent adapted region. As de-178

picted in Fig. 1, a shock wave is propagated through179

an initial tetrahedral grid to produce the desired effect.180

This grid is processed through nine adaptations by181

moving a cylindrical volume across the domain with182

constant velocity. Grid elements within the cylindrical183

volume are refined, while previously refined elements184

Fig. 1. Initial and adapted meshes (after levels 1 and 5) for the
simulated experiment.

are coarsened in its wake. During the processing, the185

size of the mesh increases from 50,000 elements to186

1,833,730 elements. 187

2.2. Graph models 188

In our experiments, a dual graph representation of189

the initial mesh is used for load balancing where each190

original tetrahedron is a vertex of the graph. An edge191

exists between two dual graph vertices if the cor-192

responding elements share a face. Mesh refinement193

consists of subdividing parent tetrahedral elements194

into two, four, or eight subelements in specified re-195

gions of the mesh. Subsequent refinements can fur-196

ther split the child elements, thereby forming a re-197

finement tree of tetrahedra for each original mesh198

element. 199

To realistically simulate the overhead associated200

with such an adaptive mesh computation, weights are201

associated with the vertices and edges of the dual202

graph. Each vertexv has two weights,Pwgtvand 203

Rwgtv while each edge(v, w) has one weight, 204

Cwgt(v,w). These weights respectively model the asso-205

ciated computational processing, data remapping, and206

runtime interprocessor communication costs.Pwgtv is 207

proportional to the number of leaves in the refinement208

tree because only those elements participate in the209

actual calculation. However,Rwgtv is proportional to 210
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the total number of elements in the refinement tree be-211

cause the entire tree must be relocated when the root is212

reassigned to another processor. Finally,Cwgt(v,w) de-213

pends on the number of leaf faces between dual graph214

verticesv andw.215

To predict performance on a variety of distributed216

architectures, a configuration graph is utilized. Each217

vertex in this fully connected graph represents a218

tightly coupled cluster of processors, while edges219

denote cluster interconnects. For the experiments re-220

ported here, we assume that all processors in a single221

cluster (node) are homogeneous and that there is222

a constant bandwidth for intra-cluster communica-223

tion. Vertex c in the configuration graph has weight224

Procc ≥ 1 that represents the processing slowdown225

factor for the corresponding cluster. Similarly, the226

edge weightConn(c,d) ≥ 1 represents the intercon-227

nect slowdown factor when a processor in clusterc228

communicates with a processor in another clusterd.229

If c = d, Conn(c,c) is the slowdown associated with230

communication between processors in the same clus-231

ter c. Note that if any of these weights are unity, there232

is no slowdown (ideal conditions).233

2.3. Metrics234

The following three metrics respectively measure235

the number of time units required for computation,236

communication, and remapping. The total time re-237

quired to process the elements assigned to processor238

p in clusterc must take into account all of them.239

• Processing cost: Wgtpv is the computational cost to240

process dual graph vertexv assigned to processorp241

which is in clusterc:242

Wgtpv = Pwgtv × Procc.243

• Communication cost: Commp
v is the communication244

cost to interact with all verticesw adjacent tov245

whose data sets are not local top (assuming thatv246

is assigned top):247

Commp
v =

∑

w

Cwgt(v,w) × Conn(c,d),
248

wherec andd are the clusters containing the pro-249

cessors to whichv andw are respectively assigned.250

Obviously, if the data sets of all vertices adjacent to251

v are also assigned top, thenCommp
v = 0.252

• Redistribution cost: Remapp
v is the overhead to copy253

the data set associated withv to another processor254

from p: 255

Remapp
v = Rwgtv × Conn(c,d), 256

wherec andd are the clusters containing the source257

and destination processors forv. Note that the redis-258

tribution cost incurred atp includes the operations259

of packing data and initiating transmission, while260

the cost incurred by the processor receivingv is 261

the sum of the communication time and the cost of262

unpacking and merging the data into existing data263

structures. Clearly,Remapp
v = 0 if the data set for 264

v is already assigned top. 265

Five additional metrics used in this work are defined266

below. 267

• Weighted queue length: Qwgtp is the total cost to 268

process all verticesv assigned top: 269

Qwgtp =
∑

v

(Wgtpv + Commp
v + Remapp

v ).
270

• Total system load: QwgtTot is the cost to process271

the entire application: 272

QwgtTot =
∑

p

Qwgtp.
273

• Heaviest load: MaxQwgt indicates the total time274

required to process the application: 275

MaxQwgt = max
p

Qwgtp.
276

• Lightest load: MinQwgt indicates the workload of277

the most lightly loaded processor: 278

MinQwgt = min
p

Qwgtp.
279

• Load imbalance factor: LoadImb represents the280

quality of the partitioning: 281

LoadImb = P × MaxQwgt

QwgtTot
,

282

where P is the total number of processors in the283

configuration graph. 284
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3. MinEX: a new partitioner285

Previous studies with the test application (described286

in Section 2.1) under PLUM utilized a variety of287

general-purpose partitioners such as ParMetis [21],288

UAMetis [26], DAMetis [26], Jostle-MS [27], and289

Jostle-MD [27]. Note that UAMetis, DAMetis, and290

Jostle-MD are diffusive schemes designed to mod-291

ify existing partitions to produce a processor allo-292

cation, whereas ParMetis and Jostle-MS are global293

from-scratch partitioners which make no assumptions294

about the original distribution of the mesh. Although295

all these partitioners achieve good load balance while296

minimizing communication overhead, they fail to297

consider the cost of moving data between proces-298

sors. A unique feature of PLUM is to address this299

drawback through the use of an efficient heuristic for300

redistributing data to assigned processors.301

In the following subsections, we design, implement,302

and analyze a novel partitioner, called MinEX, that303

optimizes computational, communication, and data304

remapping costs. We also redefine the partitioning305

goal from producing balanced workloads to minimiz-306

ing theMaxQwgt metric. No direct comparisons with307

other existing partitioners mentioned above were fea-308

sible since MinEX also considers the data redistribu-309

tion cost while partitioning the computational mesh.310

3.1. General design principles311

MinEX can be classified as a diffusive multilevel312

partitioner. Diffusive algorithms [5] utilize an exist-313

ing partition as a starting point instead of partitioning314

from scratch. The multilevel approach, originally in-315

troduced in [19], partitions a graph into three steps:316

contraction, partitioning, and expansion—each of317

which is described below.318

Similar to other multilevel partitioners, the first step319

in MinEX is to contract the mesh to a reasonable size.320

However, instead of repeatedly contracting the mesh in321

halves as is common with other multilevel partitioners,322

MinEX sequentially contracts one vertex at a time.323

The advantage of this approach is that a decision can324

be made each time and a vertex is later refined as to325

whether it should be assigned to another processor.326

This makes the algorithm more flexible since the graph327

does not have to be doubled in size before this decision328

could be made. If |V| is the number of vertices in329

the mesh, the contraction step requires O(|V|) substeps 330

which is asymptotically equal to the complexity of331

contracting the mesh sequentially in halves. 332

Once the mesh is sufficiently contracted, the re-333

maining vertices are reassigned according to the par-334

titioning criteria described in Section 3.3. 335

Finally, the mesh is expanded back to its original336

size through a refinement process. As each vertex is337

reinstated, a decision is made as to whether or not it338

should be reassigned. This decision employs the same339

criteria as used by the partitioning algorithm. Note that340

each coarse vertex reassignment, in effect, reassigns341

all of the original dual graph vertices that the coarse342

vertex represents. 343

3.2. Latency tolerance 344

Our MinEX partitioner can interact via a user-345

defined function to accommodate any latency tol-346

erance that a mesh application may possess. The347

following steps illustrate how the application can be348

programmed so that MinEX eliminates (or at least349

reduces) communication and data redistribution costs.350

Step 1 Initiate send of all computational data sets that351

are to be redistributed to other processors. 352

Step 2 For each edge(v, w), where the data set for353

vertexv is local to processorp and the data 354

set for vertexw is local to another processor355

q, initiate send of communication data. Also356

initiate send of communication data needed by357

adjacent processors. 358

Step 3 Process vertices that are not waiting for any359

incoming transmissions. 360

Step 4 Receive and unpack any remapped computa-361

tional data sets destined for processorp. 362

Step 5 Receive and unpack communication data des-363

tined for this processor. 364

Step 6 Repeat Steps 2–5 until all vertices are pro-365

cessed. 366

These steps implement a strategy where processors367

distribute computational and communication data as368

early as possible. Internal vertices can then be ser-369

viced while waiting for expected incoming messages.370

As information is received, additional communica-371

tions can be initiated and vertices processed. The most372

optimistic view of this strategy is that the processing373

activity can entirely hide the data redistribution cost374
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and communication latency. At the other extreme, the375

most pessimistic view is that no latency tolerance is376

achieved. To analyze the effect of latency tolerance377

on our test application, experiments simulating both378

possibilities are described in Section 4.379

3.3. Partitioning criteria380

The criteria for deciding whether a vertex should be381

reassigned from one processor to another is based on382

two metrics:Gain andMinVar. These are obtained as383

follows:384

• Gain represents the change inQwgtTot that would385

result from a proposed vertex move. A negative386

value indicates that less total processing is required387

after such a vertex reassignment. The partition-388

ing algorithm favors vertex moves with negative389

or small Gain values that reduce or minimize the390

overall system load.391

• MinVar measures the variance of processor work-392

loads from that of the most lightly loaded processor.393

It is computed using the workload for each proces-394

sor p and the smallest load over all processors:395

MinVar =
∑

p

(Qwgtp − MinQwgt)2.

396

The objective is to initiate vertex moves that lower397

this value. Since processors with largeQwgtp val-398

Table 1
Expected runtime and load balance quality with maximum latency tolerance for varyingThroTTle values andP = 32

Metric Clusters ThroTTle values

0 1 4 16 32 64 128 ∞
MaxQwgt 1 1993 1427 312 291 300 306 312 324

2 1847 1142 467 320 304 305 318 345
3 2035 1801 556 375 331 324 326 382
4 1868 1516 639 412 352 328 371 425
5 1834 1626 767 438 373 359 343 400
6 2081 1579 825 481 391 357 361 427
7 1884 1279 758 505 383 371 369 414
8 1944 1451 834 531 434 376 380 435

LoadImb 1 7.05 5.09 1.11 1.01 1.00 1.00 1.00 1.00
2 8.54 4.16 1.81 1.26 1.14 1.04 1.00 1.00
3 7.15 6.40 2.11 1.41 1.19 1.05 1.02 1.01
4 6.63 5.41 2.40 1.58 1.26 1.07 1.03 1.01
5 6.53 5.78 2.83 1.66 1.30 1.11 1.02 1.01
6 7.31 5.58 2.99 1.81 1.40 1.08 1.02 1.01
7 6.68 4.61 2.80 1.84 1.33 1.10 1.03 1.00
8 6.90 5.15 3.05 1.94 1.43 1.13 1.06 1.00

ues will have largeMinVar components, this cri-399

teria tends to move vertices away from processors400

that have high runtime requirements.�MinVar is 401

the change inMinVar after moving a vertex from 402

one processor to another. A negative value indicates403

that MinVar has been reduced. 404

The partitioning decisions are made as follows. For405

each vertexv, consider all adjacent vertices assigned406

to other processors. Compute theGain and MinVar 407

values that would result from movingv to each of 408

these adjacent processors. The vertex moved is the one409

with the smallestGain, and satisfies�MinVar < 0 410

and−Gain/�MinVar < ThroTTle, whereThroTTle is 411

a user-supplied parameter. To increase efficiency, we412

use a minimum heap with pointers to vertex locations413

in order to rapidly find the best migration and directly414

remove entries without searching. 415

Conceptually,ThroTTle acts as a gate that limits in-416

creases inGain based upon how much of an improve-417

ment inMinVar can be achieved. Table 1 shows how418

varyingThroTTle affects the expected application run-419

time (MaxQwgt) and load balance quality (LoadImb), 420

assuming maximum latency tolerance. TheMaxQwgt 421

entries are non-dimensionalized values in thousands,422

and were obtained by running the experiments de-423

scribed in Section 4. Table 1 results are for a network424

of P = 32 homogeneous processors distributed over425

1–8 IPG nodes (clusters). The inter-cluster intercon-426
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nect speed is assumed to be a third of the intra-cluster427

speed. Observe thatThroTTle = 64 produces the low-428

est overallMaxQwgt, and that largerThroTTle values429

improve LoadImb. Experiments with other network430

sizes using these same application have shown that431

ThroTTle generally converges at values betweenP and432

2P. Note also that for large values ofThroTTle, better433

LoadImb does not necessarily imply lowerMaxQwgt.434

3.4. Data structures435

We give here a brief description of the data struc-436

tures used for implementing the multilevel MinEX437

partitioner:438

Mesh. The adaptive mesh, represented as{|V |, |E|,439

vTot, ∗VMap, ∗VList, ∗EList}, where |V| is the num-440

ber of active vertices, |E| the number of edges,vTot441

the total vertex count (including merged vertices),442

∗VMap is a pointer to the list of active vertices,443

∗VList is a pointer to the complete list of vertices,444

and∗EList is a pointer to the list of edges.445

VMap. The list of active vertices (those that have not446

been compressed during multilevel partitioning).447

VList. The complete list of vertices. Each vertex448

v is represented as{Pwgtv, Rwgtv, |e|, ∗e, merge,449

lookup, ∗vmap, ∗Heap, border}, where Pwgtv is450

the computational cost to processv, Rwgtv the451

redistribution cost to copy the data set associated452

with v, |e| the number of edges incident onv, ∗e is a453

pointer to the first incident edge (subsequent edges454

are stored contiguously),merge the vertex that was455

merged withv during a contraction operation (set456

to −1 if not merged),lookup is the active vertex457

that containsv after a series of contractions (set to458

−1 if not merged),∗vmap is a pointer to the posi-459

tion of v in VMap, ∗Heap is a pointer tov’s heap460

entry and represents a potential reassignment ofv,461

and border is a boolean flag indicating whetherv462

is adjacent to vertices assigned to other processors.463

EList. The list of edges in the mesh. Each vertex464

v in VList points to its first edge inEList using465

∗e. Each edge record is defined as{w, Cwgt(v,w)},466

wherew is a vertex adjacent tov andCwgt(v,w) the467

communication weight associated with this edge.468

Heap. The heap of potential vertex reassignments.469

Each heap record is defined as{Gain, �MinVar, v,470

p} which specifies theGain and �MinVar that471

would result from reassigning vertexv to processor 472

p. The min-heap is keyed by theGain value. 473

Stack. The stack of collapsed edges(v, w). These 474

pushed edges are refined in an order reversed from475

the one in which they were compressed. This graph476

contraction technique is described in the next sec-477

tion. 478

3.5. Graph contraction 479

MinEX randomly selects a set of adjacent vertex480

pairs that are assigned to the same processor. From481

this set, the vertex pair(v, w) that has the largest482

Cwgt(v,w)/(Rwgtv + Rwgtw) value is merged. This483

formula attempts to find edges with large communica-484

tion costs while minimizing the potential data redistri-485

bution overhead. The motivation behind this strategy486

is to arrive at a contracted mesh with a small edge cut487

as well as a small data distribution cost. 488

To collapse the edge(v, w), a merged vertexM is 489

generated. The edges incident onM are created by 490

utilizing the edge lists of verticesv andw. VMap is 491

adjusted to containM and to removev andw; |V| is 492

decremented andvTot is incremented; |E| is increased 493

by the number of edges created forM; and the pair 494

(v, w) is pushed ontoStack. The entire process is re-495

peated until the graph is sufficiently contracted. 496

This contraction procedure is implemented using a497

set Union/Find algorithm so that edges of unmerged498

vertices remain unchanged. For example, if an un-499

merged vertex is adjacent tov, accesses to itsEList will 500

check whetherv has been merged. If it has,lookup will 501

quickly find the appropriate merged vertex. Iflookup 502

is not current (i.e.,lookup > vTot), the Union/Find 503

algorithm will search the chain of vertices beginning504

with merge in order to updatelookup, so that subse-505

quent queries can be done efficiently. The pseudo-code506

describing the Union/Find procedure is given in Fig. 2.507

3.6. Partitioning the contracted graph 508

The partitioning is performed when the graph con-509

traction process is complete. MinEX partitioning is510

efficient because the number of vertices is greatly re-511

duced. The algorithm considers every vertex of the512

coarse mesh to find potential reassignments that will513

reduceGain andMinVar as described in Section 3.3.514

All potential vertex reassignments are added to the515
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Fig. 2. Pseudo-code for the Union/Find algorithm.

min-heap, and executed in heap order. After each re-516

assignment, the heap is adjusted to reflect the new par-517

tition.518

3.7. Graph expansion519

The graph is restored to its original size by ex-520

panding pairs of vertices in an order reversed from521

which they were merged. TheStack data structure con-522

trols the order. As pairs of vertices(v, w) are refined,523

merged edges and vertices are deallocated. Themerge524

and lookup values are also adjusted inVList. The list525

VMap of active vertices is updated to delete the merged526

vertexM, and to addv andw; |V| is incremented and527

vTot is decremented; and |E| is decreased by the num-528

ber of edges created forM. After each refinement, it529

is checked whether a partition can be improved by re-530

assigningv or w. When reassignments are made, ad-531

jacent border vertices are also considered.532

4. Performance results533

In the experimental study presented below, two ex-534

treme cases are considered. The first is the most opti-535

mistic view in which processing activity can entirely536

hide the data set redistribution and communication la-537

tency. The second case, on the other hand, is the most538

pessimistic view where no latency tolerance can be539

achieved.540

The MinEX partitioner was executed with the com-541

putational test case (described in Section 2.1) that542

simulates an adaptive mesh calculation. A variety of543

system configurations was evaluated. Individual runs544

model networks with varying number of processors545

(P), number of IPG nodes/clusters (C), ThroTTle val-546

ues, and interconnect slowdowns (I). In our experi-547

ments,P ranged from 2 to 2048,C from 1 to 8,ThroT-548

Tle was varied to find the optimal value for minimiz-549

ing runtime, andI simulated high- and low-bandwidth550

cluster interconnections. 551

Based on performance studies reported in [14,24],552

typical communication latencies and bandwidth slow-553

downs from integrated clusters to configurations con-554

nected through a high-speed interconnect are in the555

range 3–100. Wide area network connections are typ-556

ically 1000–10,000 times slower than the internal in-557

traconnects of a single cluster. In our experiments, we558

normalized the intra-cluster communication speed to559

unity. Simulations of inter-cluster communication as-560

sumed slowdown factors of 3, 10, 100, and 1000. To561

simplify the analysis, we also assumed that individual562

processors are homogeneous and divided as evenly as563

possible among the clusters. 564

Table 2 shows results of experimental runs analyz-565

ing the effect of varying numbers of clusters and inter-566

connect speeds, forP = 32 homogeneous processors567

andThroTTle = 64. The interconnect speeds indicate568

the slowdown factor relative to the intra-cluster com-569

munication speed. Results are presented both when570

no latency tolerance is achieved, and also with maxi-571

mum latency tolerance. To be consistent with Table 1,572

runtimes are shown as non-dimensionalized values in573

thousands. The following conclusions can be drawn574

from these experiments. 575

As the interconnect speed is reduced, the slowdown576

experienced by utilizing additional clusters increases577

dramatically. For example, the runtime metric with no578

latency tolerance as shown in Table 2 is 4102 when579

two clusters and an interconnect slowdown of 1000580

is assumed; however, the metric is 93,566 when eight581

clusters are assumed. Thus, performance deteriorates582

by almost a factor of 22.8. Instead, if we consider an583

interconnect slowdown of 3, the performance degra-584

dation is only 1.3. The same pattern also holds true585

when maximum latency tolerance is assumed. 586

We can compare the effectiveness of latency tol-587

erant algorithms to those without latency tolerance588
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Table 2
Expected runtime (MaxQwgt) without and with latency tolerance for varying interconnect slowdowns,P = 32, andThroTTle = 64

Case Clusters Interconnect slowdowns

3 10 100 1000

No latency tolerance 1 507 507 507 507
2 728 863 1228 4102
3 755 1168 2783 18512
4 791 1361 3667 25040
5 854 1649 5677 53912
6 915 1717 8521 76169
7 956 1915 10958 80568
8 968 2178 11492 93566

Maximum latency tolerance 1 306 306 306 306
2 305 469 763 3941
3 324 548 2386 12705
4 328 680 3297 21888
5 359 768 4369 33092
6 357 856 5044 52668
7 371 893 5480 61079
8 376 1048 5721 61321

Table 3
Expected runtime and load balance quality without and with latency tolerance for varying number of processors,I = 3, andThroTTle = 2P

Case Processors MaxQwgt LoadImb

C = 1 C = 8 C = 1 C = 8

No latency tolerance 2 4526 1.00
4 2922 1.00
8 1568 2518 1.00 1.01

16 910 1493 1.00 1.17
32 507 968 1.01 1.48
64 276 563 1.05 1.69

128 169 405 1.19 2.42
256 131 253 1.66 2.80
512 111 214 2.47 4.69

1024 105 214 4.16 8.95
2048 102 170 7.47 14.33

Maximum latency tolerance 2 3782 1.00
4 2014 1.00
8 1089 1245 1.00 1.00

16 589 661 1.00 1.00
32 306 376 1.00 1.13
64 158 246 1.01 1.39

128 85 176 1.05 1.98
256 73 124 1.60 2.77
512 61 103 2.47 4.14

1024 55 95 4.04 7.79
2048 60 86 8.14 13.43
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by measuring runtimes of each approach as the num-589

ber of clusters and interconnect speeds are varied.590

The performance improvements using latency toler-591

ance increase dramatically as the number of clusters592

increases. This can be verified by comparing corre-593

sponding rows in Table 2. For example, consider the594

results with eight clusters. The runtime improvements595

comparing latency tolerant algorithms to those with596

no latency tolerance are factors of 2.7, 2.1, 2.0, and597

1.5, respectively, for interconnect slowdowns of 3, 10,598

100, and 1000. In contrast, results with two clusters599

indicate gains of 2.4, 1.8, 1.6, and 1.0, respectively,600

for the same interconnect slowdowns. These results601

clearly demonstrate that utilizing more clusters give602

greater runtime improvement when employing latency603

tolerance.604

The same is also true when the interconnect slow-605

downs are varied (this can be analyzed by comparing606

the corresponding columns in Table 2). For example,607

with an interconnect slowdown of 1000, the runtime608

improvement factors when utilizing latency tolerance609

are 1.6, 1.0, 1.5, 1.1, 1.6, 1.4, 1.3, and 1.5, respec-610

tively, for 1–8 clusters. On the other hand, with an611

Table 4
Expected runtime and load balance quality without and with latency tolerance for varying number of processors,I = 3, ThroTTle = 2P ,
and no partitioning

Case Processors MaxQwgt LoadImb

C = 1 C = 8 C = 1 C = 8

No latency tolerance 2 6621 1.80
4 5434 2.57
8 3624 4712 2.81 2.70

16 2825 3739 3.22 3.34
32 1725 2207 3.37 3.45
64 964 1294 3.50 3.78

128 663 868 4.10 4.50
256 407 524 4.38 4.87
512 392 503 8.17 8.77

1024 353 431 13.54 13.45
2048 247 304 17.74 17.80

Maximum latency tolerance 2 6561 1.81
4 5125 2.63
8 3142 3142 2.97 2.95

16 1832 1910 3.10 3.05
32 1036 1265 3.27 3.52
64 560 776 3.41 3.93

128 364 516 4.07 4.69
256 205 328 4.24 5.35
512 198 317 7.93 9.53

1024 178 281 13.08 14.61
2048 128 199 17.56 19.23

interconnect slowdown of 10, the corresponding fac-612

tors are 1.6, 1.8, 2.1, 2.0, 2.1, 2.0, 2.1, and 2.1. In this613

case, results somewhat surprisingly demonstrate that614

latency tolerance has a bigger payoff when intercon-615

nect slowdowns are smaller. Additional investigations616

are required to verify/counter this observation. 617

For our class of applications, the IPG could be a vi-618

able environment if a high-speed interconnect (slow-619

down factor between 3 and 10) between clusters is620

available. Results in Table 2 comparing 1 and 8 clus-621

ters with an interconnect slowdown of 3 show runtime622

deterioration factors of 1.24 and 2.04 with and with-623

out latency tolerance, respectively. Similar compar-624

isons for an interconnect slowdown of 10 show deteri-625

oration factors of 3.65 and 4.60. These factors, being626

smaller than the number of clusters, indicate a relative627

speedup when the number of clusters increases. 628

Table 3 presents simulation results when the to-629

tal number of processorsP is varied, for interconnect630

slowdownI = 3 andThroTTle = 2P . Both the ex- 631

pected runtime (MaxQwgt) and the load balance qual-632

ity (LoadImb) with and without latency tolerance are633

reported, but only for 1 and 8 clusters. The perfor-634
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mance ratio between the two cluster configurations re-635

mains roughly constant across all processor counts. So636

too does the ratio between maximum and zero latency637

tolerance. Note that generally near optimal results are638

obtained whenThroTTle is set to a value of 2P; how-639

ever, whenThroTTle = 3P for P = 1024 andC = 8,640

MaxQwgt andLoadImb both improve to 188 and 7.22,641

respectively (compared to 214 and 8.95 as reported in642

Table 3).643

Table 3 also demonstrates the scalability of our test644

application. The benefits of using more processors645

begins to decrease beyondP = 128 as is evident646

from the MaxQwgt values. The quality of load bal-647

ance also deteriorates rapidly whenP > 256. This is648

because the problem size for our test application does649

not increase withP but is fixed at 50,000 elements650

(see Section 2.1).651

Finally, to evaluate the effectiveness of MinEX652

versus the case where no partitioning is done, addi-653

tional experiments were conducted. These results are654

reported in Table 4 where the settings are identical655

to those in Table 3 except that the MinEX partitioner656

was not invoked. As expected, the quality of load657

balance is severely affected, even for small numbers658

of processors. The expected runtimes also increase659

by about a factor of 2. Other interconnect and clus-660

ter combinations showed significant improvements661

as well when using MinEX (but the results are not662

reported here due to length restrictions). For exam-663

ple, with I = 100 andC = 4, MinEX reduces the664

expected runtime from 17,752 to 3297 if maximum665

latency tolerance occurs. Similarly, if no latency toler-666

ance is possible, the improvement in runtime is from667

18,323 to 3667. In both cases, MinEX improves the668

runtime by approximately a factor of 5.669

5. Conclusions670

In this paper, we presented a novel latency-tolerant671

partitioner, called MinEX, that is suitable for adaptive672

mesh applications executed in a parallel distributed673

fashion on NASA’s IPG. MinEX not only balances674

processor workloads but also minimizes data move-675

ment and runtime communication, and can account676

for expected latency tolerance in the application. Our677

simulation results demonstrated that MinEX is a vi-678

able load balancer provided the IPG nodes are con-679

nected by a high-speed asynchronous interconnection680

network. Otherwise, applications would have to have681

little runtime communication and data set remapping682

overhead for low-speed wide area networks to be prac-683

tical interconnects. For details on other applications,684

see [18]. Implementing a parallel version of MinEX685

and conducting a rigorous mathematical analysis are686

part of our future work. Finally, real distributed exper-687

iments using Globus are planned to complement the688

results presented in this paper. 689
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