
A Latency-Tolerant Partitioner for Distributed Computing
on the Information Power Grid

�
Sajal K. Das and Daniel J. Harvey

Dept. of Computer Science & Engineering
The University of Texas at Arlington

Arlington, TX 76019-0015
E-mail:

�
das,harvey � @cse.uta.edu

Rupak Biswas
NAS Systems Division

NASA Ames Research Center
Moffett Field, CA 94035-1000
E-mail: rbiswas@nas.nasa.gov

Abstract

NASA’s Information Power Grid (IPG) is an infrastruc-
ture designed to harness the power of geographically dis-
tributed computers, databases, and human expertise, in or-
der to solve large-scale realistic computational problems.
This type of a metacomputing environment is necessary to
present a unified virtual machine to application developers
that hides the intricacies of a highly heterogeneous environ-
ment and yet maintains adequate security. In this paper, we
present a novel partitioning scheme, called MinEX, that dy-
namically balances processor workloads while minimizing
data movement and runtime communication, for applica-
tions that are executed in a parallel distributed fashion on
the IPG. Experimental results show that MinEX is an effec-
tive load balancer in a distributed IPG environment.

1. Introduction

The Information Power Grid (IPG) has been developed
by NASA and other collaborative partners to harness the
power of geographically distributed resources. There have
also been numerous other attempts to develop computa-
tional grid capabilities. Refer to [4] for a comprehen-
sive survey of current technology and grid-based systems.
For example, Condor [7] was an early success in devel-
oping a distributed system to manage research studies at
workstations around the world; however, it did not ade-
quately deal with security issues that are important for a
general computational grid implementation. On the other
hand, The Globus Metacomputing Infrastructure Toolkit
(http://www.globus.org) has been extremely suc-
cessful in providing a portable virtual machine environ-
ment. Mechanisms exist within Globus to share remote�

This work was supported by NASA Ames Research Center under Co-
operative Agreement Number NCC 2-5393.

resources, provide adequate security, and allow MPI-based
message passing. Due to its general, portable, and modular
nature, Globus has been chosen by NASA as the middle-
ware to implement the IPG.

With a goal to study the latency tolerance, partitioning
and load balancing performance of parallel distributed com-
puting applications on the IPG, in this paper, we simulate an
unsteady adaptive mesh application on a wide area network.
The number of IPG nodes, the number of processors per
node, and the interconnect slowdowns are parameterized so
that general conclusions can be drawn. Before presenting
our contributions, let us summarize our previous work in
this context. We have investigated a load balancing strat-
egy, called PLUM [9], which is an architecture-independent
framework geared towards adaptive numerical solutions. (It
was also experimented with the above application as the test
case.) PLUM globally partitions the computational mesh
after each adaptation and determines whether rebalancing
the load would lead to reduced total execution time. If an
improvement in the load balance can be achieved, it utilizes
an effective remapping algorithm to minimize the required
data movement.

This paper proposes a novel partitioning approach that
optimizes the two important steps of PLUM (balancing and
remapping) as part of the partitioning process. The goal
of this partitioner, called MinEX, is different from that of
most other partitioners. Instead of attempting to balance
the load, the objective is to minimize the total runtime of
the application. This approach counters the possibility that
perfectly balanced loads can still incur excessive communi-
cation and redistribution costs while the application is pro-
cessed. MinEX also is able to compensate for latency toler-
ance on the IPG. Comparisons between MinEX and PLUM
show that MinEX reduces the number of elements migrated.
For example, with 32 partitions in our test case, PLUM re-
distributed 63,270 mesh elements in contrast to 30,548 ele-
ments when MinEX is used.

This paper is organized as follows. Section 2 introduces
the computational application to be tested. Section 3 de-
scribes the new MinEX partitioner. Section 4 describes the
experimental study, analyzes the results, and draws conclu-
sions. Section 5 concludes the paper.

2. Computational Test Case

Many computational problems are modeled discretely as
an unstructured mesh of vertices and edges. To capture
evolving features, the mesh topology is frequently adapted.
For an efficient parallel implementation, this requires dy-
namic load balancing. In other words, mesh objects will
have to be reassigned after each adaptation phase to rebal-
ance the workload among the processors. It is critical to
minimize the overhead associated with remapping data sets,
and to reduce the communication between processors at the
next solution step. These goals are especially important in
an IPG context where communication bandwidths between
nodes are likely to be much smaller than on a single multi-
processor machine.

The computational mesh used for the experiments in this
paper simulates an unsteady environment where the adapted
region is strongly time-dependent. As shown in Figure 1, a
shock wave is propagated through an initial grid to produce
the desired effect. The computational mesh is processed
through nine adaptations by moving a cylindrical volume
across the domain with constant velocity. Grid elements
within the cylindrical volume are refined while previously-
refined elements are coarsened in its wake. During the pro-
cessing, the size of the mesh increases from 50,000 ele-
ments to 1,833,730 elements.

Figure 1. Initial and adapted meshes

The data used for the simulations presented in this paper
were generated by an Euler solver [10] and uses tetrahe-
dral elements [2] to represent the three dimensional mesh.
A dual graph representation of the original mesh is used
by our experiments for load balancing where each original

tetrahedra is a vertex of the dual graph. An edge exists be-
tween two dual graph vertices if the elements share a face.
We assume that units of computational and communication
cost are equal. Mesh refinement consists of subdividing par-
ent tetrahedral elements into two, four, or eight subelements
in specified areas of the mesh. Subsequent refinements can
further refine the child elements, thereby forming a refine-
ment tree of tetrahedra for each original mesh element.

Each vertex � of the dual graph has two weights,���	�	
��
and � �
�	
�� , while each edge ��������� has one weight,� �	�	
�� ��� ���

. These weights refer respectively to processing,
data remapping, and communication costs associated with
processing a dual graph vertex.

���
�	

�
is the number of

leaves in the refinement tree because these elements partic-
ipate in the actual calculation. � �
�	

� is the total number
of elements in the refinement tree because the entire tree
must be relocated when the vertex is reassigned to another
processor.

� �
��
�� ��� ���
is the number of leaf faces that are

adjacent to dual graph vertices � and � .
To realistically predict performance on a variety of dis-

tributed architectures, a configuration graph is also utilized.
Vertices in this graph represent a cluster of processors. For
the sake of the experiments presented in this paper, we as-
sume that all processors in a cluster are homogeneous and
that there is a constant bandwidth for intra-cluster commu-
nication. Each vertex in the configuration graph has an asso-
ciated weight

�	�
 �!#"%$'&
representing the processing slow-

down factor for a cluster relative to the others. Likewise,
edges

�)((+*�!#
 � " � ,-� $.&
represent the interconnect slow-

down factor when a processor in cluster / communicates
with a processor in cluster 0 . If /2130 , �)(�(�*�!#
 � " � " � rep-
resents the slowdown associated with communication be-
tween processors in the same cluster / . Note that if

���+ �! "
or
�)((�*�!4
 � " � ,-�

is unity, there is no slowdown (represents
the most efficient connection in the network).

The following metrics respectively reflect the number of
time units required for computation, data remapping, and
communication. The total time required to process the ver-
tices assigned to a processor 5 must take into account all
three metrics.6 Processing Weight (

�
��
 �
) is the computational cost

to process vertex � assigned to a processor in cluster / :�	�	
 � 1 ���
�	
 �87 �	�
 �! ":96 Communication Cost (
� 4;	; �<) is the cost to interact

with all vertices adjacent to � but whose data sets are
not local to processor 5 (assuming that � is assigned
to 5). Vertex � is adjacent to � , while / and 0 are
the clusters respectively associated with the processors
assigned to � and � :� 4;	; �< 1>=�@?A < � �	�	
B� ��� ��� 7 �)((+*�!#
 � " � , � 9

6 Redistribution Cost (� *4;DC)E �<) is the overhead to copy
the data set associated with � to another processor from5 . Note that the redistribution cost incurred at 5 in-
cludes the operations of packing data and initiating
transmission. The redistribution cost incurred by the
processor receiving � is the sum of the communication
time and the cost of unpacking and merging the data
into existing data structures:

� *4;DC)E �< 1GF � �	�	
 �87 � H((�*�!#
 � " � ,-� if /JI1K0L
if /M1K0 9

Assume that / is the cluster to which vertex � is as-
signed, and 0 is the cluster associated with the proces-
sor to which � is to be relocated.

If the data set for � is already assigned to 5 , no redis-
tribution cost is incurred, i.e. � *4;DC)E �< 1 L . Similarly,
if the data sets of all the vertices adjacent to � are also
assigned to 5 , the communication cost,

� �;	; �< , is 0.

Additional metrics used in this work are defined below:6 Weighted Queue Length (N �
�	
 �O5��) is the total cost to
process the vertices assigned to 5 :

N �	�	
 �P5��Q1 =�
assigned to <� �
�	

�SR � 4;	; �< R � *�;DC)E �< � 9
6 Total System Load (N �
�	
�T�U)T) is the sum, over all

procesors, of N �	�	
 �P5D� .6 Heaviest Load (V C�W N �
�	
) is the maximum value ofN �	�	
 �P5�� over all processors, and indicates the total
time required to process the application.6 Lightest Load (VDX (N �	�	
) is the minimum value ofN �	�	
 �P5�� over all processors, and indicates the work-
load of the most lightly-loaded processor.6 Average Load (Y	Z � N �
�	
) is N �
�	
	T�UHT	[#\ , where

\
is

the total number of processors.6 Load Imbalance Factor (] 	C�^B_`;�a) represents the
quality of the partitioning and is V C�W N �
�	
�[Y	Z � N �	�	
 .

3. Proposed MinEX Partitioner

MinEX can be classified as a diffusive multilevel par-
titioner. The multi-level approach, originally introduced
in [5], partitions a graph in three steps: contraction, parti-
tioning, and refinement. Diffusive algorithms [3] utilize an
existing partition as a starting point instead of partitioning
from scratch. MinEX is unique in that it redefines the parti-
tioning goal to minimizing V C)W N �
�	
 rather than balancing
processing cost among partitions.

3.1. General Design

The partitioning steps of MinEX are discussed below.
Similar to other multilevel partitioners, the first step in

MinEX is to contract the mesh to a reasonable size. Instead
of repeatedly contracting the mesh in halves as is common
with other multilevel partitioners, MinEX sequentially con-
tracts one vertex at a time. The advantage of this approach
is that a decision can be made each time a vertex is later
refined as to whether it should be assigned to another pro-
cessor, making the algorithm more flexible. If b cdb is the
number of vertices in the mesh, contraction requires ef�gb chb �
steps which is asymptotically equal to the complexity of
contracting the mesh sequentially in halves.

Once the mesh is sufficiently contracted, the remaining
vertices are reassigned according to the criteria followed by
the partitioning algorithm (described in Section 3.2).

The mesh is expanded back to its original size through a
refinement process. As each vertex is refined, a decision is
made as to whether it should be reassigned. This decision
employs the same criteria that is followed by the partition-
ing algorithm in the second step above. Each coarse vertex
reassignment in effect reassigns all of the vertices the coarse
vertex represents.

3.2. Partitioning Criteria

To describe the criteria for deciding whether a vertex
should be reassigned from one processor to another, two
additional metrics, i C X (and VDX (
j+C)� Z , need to be defined:6 i C X (represents the change in N �
�	
	T+U)T that would re-

sult from a proposed vertex move. A negative value
would indicate that less processing is required after
such a move. The partitioning algorithm favors vertex
moves with negative or small i C X (values that reduce
or minimize overall system load.6 VDX (j+C�� is computed using the workload (N �
�	
 �P5D�) for
each processor 5 and the smallest load of any processor
(V�X (N �
��
) in accordance with the following formula:

VDX (
j+C�� 1k= < �lN �
�	
 �P5��nmoVDX (N �
�	
 ��p 9
In other words, V�X (
j+C�� computes the variance of pro-
cessor workloads from that of the most lightly-loaded
processor. The objective is to initiate vertex moves that
lower this value. Since processors with large N �
�	
 �O5��
values will have large VDX (
j+C)� components, this crite-
ria will tend to move vertices away from processors
that have high runtime requirements. qJV�X (
j+C�� is the
change in VDX (
j
C�� after moving a vertex from one pro-
cessor to another. A negative value indicates that theVDX (j+C�� value has been reduced.

The partitioning decisions are made as follows. For each
vertex � , consider all edges to adjacent vertices that are as-
signed to other processors. Compute the i C X (and V�X (
j+C��
that would result from moving � to each of the adjacent
processors. The vertex moved is the one with the smallesti C X (and satisfies qJVDX (j+C��2r L and mMi C X (
[q8VDX (
j+C)�drT�s
�+ �T	T+t�*

, where
T�s
�+ �T	T+t�*

is a specified parameter. To
increase efficiency, we use a min-heap with vertex pointers
to heap locations to rapidly find the best move and directly
remove entries without searching.

Table 1. V C�W N �
�	
 values for varying
T�s
�+ �T�T�t�*

ThroTTle values
Clusters 0 3 16 32 64 128 u

1 1993 348 291 300 306 312 324
2 1847 748 320 304 305 318 345
3 2035 674 375 331 324 326 382
4 1868 761 412 352 328 371 425
5 1834 835 438 373 359 343 400
6 2081 898 481 391 357 361 427
7 1884 1032 505 383 371 369 414
8 1944 1102 531 434 376 380 435

Conceptually,
T�s
�
 �T	T�t�*

acts as a gate that limits in-
creases in i C X (based upon how much of an improve-
ment in VDX (
j+C�� can be achieved. Table 1 indicates
how varying

T�s
�+ �T	T+t�*
affects the expected application

runtimes (MaxQWgt). The MaxQWgt entries are non-
dimensionalized values in thousands, and were obtained by
running the experiments described in Section 4. Table 1 as-
sumes a network of 32 homogeneous processors distributed
over one to eight IPG nodes. The inter-cluster interconnect
is assumed to have a third of the bandwidth of the intra-
cluster interconnects. Results show that a

T�s
�+)T	T�t�*
value

of 64 produces the lowest overall V C�W N �
�	
 .
3.3. Partitioning Data Structures

We describe here the data structures used by the MinEX
partitioner to perform its multilevel algorithm.V *�v4s The adaptive mesh whose format isw b c2bO��b xdbP�yZ T
 �
 � � j V C�� � � j]�X v#
 � �4z]�X v#

{ where b cdb

is the number of active vertices, b x|b is the number of
edges, Z T
 �
 is the total vertex count (including merged
vertices), � j V C)� is a pointer to the list of active ver-
tices, � j]�X v4
 is a pointer to the complete list of ver-
tices, and �4z]�X v#
 is a pointer to list of edges.j#;DC��

The list of active vertices (those that have not been
compressed through multilevel partitioning).j]�X v#
 The complete list of vertices. Each vertex, � , is
defined by a

j]�X v#
 record asw ���
�	
 ��� �
�	
 � ��b }
bP� � }���~h�����g���	��5�� � ��~h��5�� �H� }4��5��g�`0)� {

where
���
�	

is the computational cost to process � ,� �
��
�� is the redistribution cost to copy the data
associated with � , b }
b is the number of adjacent
edges associated with � , � } is a pointer to the first
edge associated with � (subsequent edges are stored
contiguously), ~|��� is the vertex that was merged with� during a contraction operation (m 1 if not merged),���
��5 is the active vertex that contains � after a series
of contractions (m 1 if not merged), � ��~���5 is a pointer
to the position of � in the active vertex table, �H� }4��5
is a pointer to the heap entry that relates to � and
represents a potential reassignment of � , and ��0�� is
a boolean flag indicating whether � is adjacent to
vertices assigned to other processors.z]BX v#
 The list of edges in the mesh. Each vertex � inj]�X v#
 points to its first edge in z]�X v4
 using � } . Each
edge record is defined as

w ��� � �	�	
 � ��� ��� { where � is
an adjacent vertex to � and

� �
�	
 � ��� ���
is the communi-

cation weight associated with this edge.�+*�C)E
The heap of potential vertex reassignments. Each

heap record is defined as
w i C X (�gqJVDX (j+C�� �y�B��5 {

which specifies the i C X (and qJVDX (j+C�� that would re-
sult from reassigning � to processor 5 . The min-heap
is keyed by the i C X (value.�

C�!#�

The stack of collapsed edges, � w �	�#�y� p { � . The
pushed edges are refined in an order reversed from the
one that they were compressed.

3.4. Graph Contraction

The partitioner selects sets of randomly chosen pairs
of vertices that are assigned to the same processor 5 .
From this set, the vertex pair, ��������� , that has the largest� �	�	
 � ��� ��� [��� �
�	
 � R � �
��
 � � value is merged. This formula
attempts to find edges with large communication weights
while minimizing the potential cost of data set redistribu-
tion. The motivation for this strategy is to arrive at a con-
tracted mesh with a small edge cut and with small data dis-
tribution cost.

To contract a pair of vertices, a merged vertex � is cre-
ated and the edge ���B�y�%� is collapsed. The edges incident
on � are created by utilizing the edge lists of vertices �
and � .

j V C)E is adjusted to contain the newly created vertex� and to remove � and � , b cdb is decremented, Z T+ �
 is in-
cremented, b xdb is increased by the number of edges created
for � , and the pair ���B�y�%� is pushed onto

�
+C+!#�
.

3.5. Union/Find Algorithm

The contraction is implemented using a set Union/Find
algorithm so that edges of existing vertices remain un-
changed. For example, if an existing vertex is adjacent to� , accesses to its z]�X v#
 will check whether � has been

merged. If it has, ���	��5 will quickly find the appropriate
merged vertex. If ���	��5 is not current (���	��5���Z T+ �
),
the Union/Find algorithm will search the chain of ver-
tices beginning with ~|��� to update ���	��5 , so subsequent
lookups can be done efficiently. Pseudo code describing
the Union/Find algorithm is given in Fig. 2.

procedure ���l��0����
�
if (~h����1 1 m &) return (�)
if (���
��52¡	1 m &) and (���
��5 r 1¢Z T+ �
)

then return (���
��5>1£���l��0J�����	��5��)
else return (���	��5>1¢���l��0���~h���+�)

Figure 2. Union/Find algorithm pseudo code

3.6. Partitioning the Contracted Graph

The partitioning is performed when the graph contrac-
tion process is complete. Partitioning is efficient because
the number of vertices is greatly reduced. The algorithm
considers every remaining mesh vertex to find potential re-
assignments that will reduce i C X (and V�X (
j+C�� as described
in Section 3.2. All potential vertex reassignments are added
to the min-heap, and executed in heap order. After each re-
assignment, the heap is adjusted to reflect the new partition.

3.7. Refinement

The graph is restored to its original size by expanding
pairs of vertices in reverse order from which they were
merged. The

�

C�!#�
data structure controls the order. As

pairs of vertices �������%� are refined, merged edges and ver-
tices are deallocated. The ~h��� and ���	��5 numbers are also
adjusted in the vertex table. The

j V C)E table is adjusted to
delete the merged vertex, � , and to add � and � , b cdb is
incremented and Z T+)
 is decremented, and b x|b is decreased
by the number of edges created for � . After each refine-
ment, it is checked whether a partition can be improved by
reassigning � or � . When reassignments are made, adjacent
border vertices are also considered.

4. Experimental Study

In the experimental study that we present, two cases are
considered. The first case is the most optimistic view in
which processing activity can entirely hide the data set and
communication latency. The second case is the most pes-
simistic view where no latency tolerance can be achieved.

MinEX was executed with actual application data to sim-
ulate mesh processing for a variety of system configura-
tions. Individual runs simulate networks with varying num-
bers of processors (

\
), numbers of clusters (¤),

T�s
�+ �T�T�t�*

values, and interconnect slowdowns (¥). \ ranged from 2
to 2048, ¤ from 1 to 8,

T�s
�+)T	T�t�*
was varied to find the op-

timal value for minimizing runtime, and ¥ simulated high-
and low-bandwidth cluster interconnections.

Based on performance studies [8], typical communica-
tion latencies and bandwidth slowdowns from integrated
clusters to configurations with clusters connected through
a high-bandwidth interconnect are in the range 3 to 100.
Wide area network connections are 1,000 to 10,000 times
slower than the internal intraconnects of a single cluster.
For these experiments, we have assumed the intra-cluster
communication slowdowns to be normalized to a value of
unity. Simulations of inter-cluster communication assumed
slowdown factors of 3, 10, 100, and 1,000. To simplify the
analysis, we have assumed that individual processors are
homogeneous and divided evenly among the clusters.

We present our results in Tables 2 and 3 for
\ 1§¦�¨ .

To be consistent with results in other tables of this paper,
runtimes are shown in thousands of units. Table 2 charts the
experimental results when no latency tolerance is achieved,
while Table 3 assumes maximum latency tolerance.

Table 2. Expected runtimes (no tolerance)

Interconnect Slowdowns
Clusters 3 10 100 1000

1 473 473 473 473
2 728 863 1228 4102
3 755 1168 2783 18512
4 791 1361 3667 25040
5 854 1649 5677 53912
6 915 1717 8521 76169
7 956 1915 10958 80568
8 968 2178 11492 93566

Table 3. Expected runtimes(max. tolerance)

Interconnect Slowdowns
Clusters 3 10 100 1000

1 287 287 287 287
2 298 469 763 3941
3 322 548 2386 12705
4 328 680 3297 21888
5 336 768 4369 33092
6 345 856 5044 52668
7 352 893 5480 61079
8 357 1048 5721 61321

The following conclusions can be drawn:6 With greater interconnect slowdowns, the runtimes in-
crease dramatically as additional clusters are used.
For example, first compare the runtime metrics in the
Table 2 for 2 and 8 clusters when an interconnect
slowdown of 1000 is assumed. A slowdown ratio of© ¦��gª)«)« [#¬ � & L ¨f­®¨�¨ 9 ¯ L is shown. Next, consider the

same rows for an interconnect slowdown of 3. Now the
slowdown ratio is

© « ¯ [)° ¨ ¯ ­ & 9 ¦�¨ , which is a much
smaller value. The same pattern holds true in Table 3.6 We can compare the effectiveness of latency tolerant
algorithms to algorithms without latency tolerance, by
measuring runtimes of each approach as the number of
clusters and interconnect slowdowns are varied. The
relative improvements, from algorithms without la-
tency tolerance to algorithms with latency tolerance,
are greater when more clusters are employed. This
can be verified by comparing the same rows from Ta-
bles 2 and 3. For example, consider the case of 6 clus-
ters. The difference in runtimes are

© & ª�m±¦ ¬ ª�1²ª ° L ,&4°
&4° m ¯ ªH«§1 ¯ « & , ¯ ª�¨ & m³ª L ¬)¬ 1´¦ ¬	°�° , and° « & « © mKª)¨)«)« ¯ 1§¨)¦�ª L & , respectively, for intercon-
nect slowdowns of 3, 10, 100, and 1000. In con-
trast, the case with 2 clusters indicate improvements
of
° ¨ ¯ mµ¨ © ¯ 1 ¬ ¦ L , ¯ «)¦Sm ¬ « © 1K¦ © ¬ , & ¨)¨ ¯ m ° «)¦�1¬ «�ª , and

¬�& L ¨Jm¶¦ © ¬�& 1 & « & for the same intercon-
nect slowdowns. In general, the rows that correspond
to more clusters show greater runtime improvements
when employing latency tolerance. The same can-
not be said when analyzing columns of the two tables
where interconnect slowdowns are varied. For exam-
ple, with an interconnect slowdown of 100, the im-
provements are

¬
° ¦�m·¨ ¯ ° 1 & ¯ « , & ¨)¨ ¯ m ° «)¦ 1 ¬ «�ª ,¨ ° ¯ ¦fm²¨)¦ ¯ «¶1¸¦ © ° , ¦�«)« ° mK¦�¨ © ° 1¸¦ ° L , ªH« °)° m¬ ¦�« © 1 & ¦ L ¯ , ¯ ª�¨ & m¹ª L ¬�¬ 1k¦ ¬
°)° , & L)© ª ¯ m¹ª ¬ ¯ L 1ª ¬
° ¯ , and
&�&:¬ © ¨Bm�ª ° ¨ & 1Kª °�°	& , respectively, for clus-

ters 1 to 8. Instead, with an interconnect slowdown
of 10, the corresponding runtime improvements are¬	° ¦Dm�¨ ¯ ° 1 & ¯ « , ¯ «)¦Dm ¬ « © 1K¦ © ¬ , &)& « ¯ m�ª ¬ ¯ 1k«�¨ L ,& ¦�« & mµ« ¯ L 1K« ¯ & , & « ¬ © m ° « ¯ 1 ¯�¯ & , &4°
&4° m ¯ ªH«�1¯ « & , & © & ª�m ¯ © ¦h1 & L ¨�¨ , and ¨ &4° ¯ m & L ¬ ¯ 1 &)& ¦ L .
In this case, a clear pattern cannot be established.6 IPG solutions with this application are viable if high-
bandwidth interconnects (slowdowns between 3 and
10) are utilized. Consider the columns of Tables 2 and
3 with an interconnect slowdown factor of 3. When
comparing runtimes for 1 and 8 clusters, slowdowns
of 2.04 and 1.24 are shown. Similarly, with an inter-
connect slowdown factor of 10, the slowdown factors
are 4.60 and 3.65. These factors being smaller than the
number of clusters indicate a speedup the number of
clusters increases.6 To evaluate the effectiveness of MinEX versus the
case where no partitioning was done, additional exper-
iments were conducted. Consider the case where the
interconnect slowdown factor is 100, and 4 clusters are
used. If latency tolerance is employed, the partitioner
reduced runtime from 17752 to 3297. Similarly, if no
latency tolerance is employed, the improvement in run-
time was from 18323 to 3667. Both show partitioner

improvements in runtime by approximately a factor of
5. Other interconnect/cluster combinations show sig-
nificant improvements as well.

5. Conclusions

In this paper, we have presented a latency-tolerant parti-
tioner, MinEX, that is designed specifically for distributed
computing environments such as the IPG. With adaptive
mesh applications, MinEX effectively balances processor
workloads, minimizes data movement and runtime commu-
nication, and can account for expected latency tolerance.
An ongoing area of research is to formally compare MinEX
to other popular partitioners such as PMeTiS [6] using the
classical N-body application [1]. Real experiments with un-
structured meshes on distributed clusters using Globus are
also planned to complement the results presented in this pa-
per.

References

[1] J. Barnes and P. Hut, “A hierarchical º�»�¼¾½P¿�ÀÁ¼ÃÂ force
calculation algorithm,” Nature, 324 (1986) 446–449.

[2] R. Biswas and R.C. Strawn, “A new procedure for
dynamic adaption of three-dimensional unstructured
grids,” Applied Numerical Mathematics, 13 (1994) 437–
452.

[3] G. Cybenko, “Dynamic load balancing for distributed-
memory multiprocessors,” Journal of Parallel and Dis-
tributed Computing, 7 (1989) 279–301.

[4] I. Foster and C. Kesselman, The Grid: Blueprint for
a New Computing Infrastructure, Morgan Kaufmann,
1999.

[5] B. Hendrickson and R. Leland, “A multilevel algo-
rithm for partitioning graphs,” Tech. Report SAND93-
1301, Sandia National Laboratories, 1993.

[6] G. Karypis and V. Kumar, “Parallel multilevel k-way
partitioning scheme for irregular graphs,” Tech. Re-
port 96-036, University of Minnesota, 1996.

[7] M. Litzdow, M. Livny, and M.W. Mutka, “Condor —
a hunter of idle workstations,” 8th Intl. Conference of
Distributed Computing Systems, 1988, 104–111.

[8] S. Nog and D. Kotz, “A performance comparison of
TCP/IP and MPI on FDDI, fast Ethernet, and Ether-
net,” Tech. Report PCS-TR95-273, Dartmouth Col-
lege, 1996.

[9] L. Oliker and R. Biswas, “PLUM: Parallel load bal-
ancing for adaptive unstructured meshes,” Journal of
Parallel and Distributed Computing, 52 (1998) 150–177.

[10] R.C. Strawn and T.J. Barth, “A finite-volume Eu-
ler solver for computing rotary-wing aerodynamics
on unstructured meshes”, Journal of the American He-
licopter Society, 38 (1993) 61–67.

