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Abstract

As distributed computing networks become more and more popular, it is important to insure
that the amount of processing performed by the various processors (or nodes) is as balanced as
possible. More specifically, it is desirable to prevent, if possible, the condition where one node
is overloaded with a backlog of jobs to be processed while another processor is lightly loaded or

idle.

Among numerous algorithms developed to address the load balancing problem, a unique ap-
proach utilizing what is known as a symmetric broadcast network was originally proposed by
Das et al. [1, 2, 3]. By defining robust communication patterns between the nodes of a network
in a topology-independent manner, very promising and original balancing algorithms have been
derived.

This paper proposes a refined algorithm that utilizes the symmetric broadcast approach adapted
for use on a hypercube multicomputer. By extensive simulation studies using a Poisson distri-
bution of job generation (i.e. workload) we compare the proposed algorithm to a variety of other
existing load balancing algorithms.

The empirical results of our experiments show that the symmetric broadcast algorithm is superior
in being able to balance system load and to minimize processor idle time.

Key words: network, topology, hypercube, system load, job migration, spanning binomial tree,
homogeneous network, Poisson distribution.

1 Introduction

In order to maximize the usefulness of a multicomputer system, it is essential to even the load
between the processors of the network. in [13], it was determined that without load balancing, even
when a multicomputer network is relatively busy, it is likely that some processors are heavily loaded
while others are lightly loaded or idle.

The load balancing problem is closely related to scheduling and resource allocation. [14] presents
many papers that describe this relationship. For example, load balancing, scheduling, and resource
allocation can be static [15, 16] or dynamic. Static allocation relates to decisions made at compile

1



time. If the static approach is to be used, compile time programming tools are necessary to ad-
equately estimate the required resources [17].

Dynamic algorithms [19, 20], on the other hand, allocate/reallocate resources at run time in accord-
ance with system parameters that are maintained. For example, These parameters determine when
jobs can be migrated and account for the overhead involved in such a transfer [21]. Determining
which parameters are to be maintained and how they are to be broadcast are important design con-
siderations. Many of these issues are resolved based upon the objectives of the distributed scheduling
policies [18, 22].

In the literature, (i.e. [4]), load balancing algorithms are classified according to their operational
characteristics, the Symmetric Broadcast Algorithm that we propose can be classified as follows:

Adaptive The algorithm adapts its performance based on the total load level (the total number of
jobs queued for processing in the system).

Symmetrically Initiated Both senders and receivers can initiate load balancing activities.

Stable The algorithm under certain situations does not burden the network with excessive balancing
traffic. Under light system loads, such traffic can occur when an unstable algorithm at a
particular node repeatedly looks to other nodes for jobs to process. Similarly, excessive traffic
could also occur in the thrashing of jobs from process to process when the system load is heavy.

Effective System performance does not degrade when the algorithm is operating.

This paper considers general purpose distributed-memory parallel computers that are connected by
a point to point network topology. The nodes of the network communicate using message passing.
Responsibility for load balancing activities are decentralized, or spread throughout the nodes of the
network. The load at a particular processor is determined by the length of its local job queue. For
simplicity, we assume that the network is homogeneous and any job can be processed by any node.
However jobs cannot be rerouted once execution begins.

The symmetric broadcast approach to load balancing, proposed by Das et al. [1, 2, 3] is topology
independent. We modify the approach to adapt the concept for use on hypercubes. Analogous
adaptations can easily be devised for use on other network topologies.

The proposed algorithm is analyzed, using simulation, via a parallel virtual machine that has been
constructed using the PVM package. Popular load balancing algorithms that are compared include
the Random [5], Gradient [6, 7], Sender Initiated [8], Receiver Initiated [8], and Adaptive Contracting
methods [8]. The algorithm is also compared to a network model using no balancing at all.

The empirical results gathered by our analysis show that load balancing achieved using the symmetric
broadcast network is superior to that of the other algorithms that are analyzed. Further adaptations
of this algorithm to other network topologies should provide a general solution to a wide variety of
applications.

This paper is organized as follows. Section 2 discusses alternate approaches to measuring load
balancing algorithm performance and introduces the various algorithms that are compared. Section 3
describes the refinements made to adapt the symmetric broadcast network to the hypercube and
provides an example. Section 4 provides a detailed description of the implementation. Section 5
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describes the performance analysis and discusses the results. Section 6 concludes the paper with
possible direction for future research.

2 Preliminaries

2.1 Related Work

Among various approaches that have been used in the literature for comparing load balancing al-
gorithms, three categories of analysis predominate. These are: (i) mathematical modeling, (ii) solving
well known problems in a parallel environment, (iii) simulation. For example, in [9], the probability
of load balancing success is computed analytically. In [10], several load balancing methods are com-
pared by implementing Fibonacci number generation, the N-Queens problem, and the fifteen puzzle
on a network. Many papers have been written that employ the simulation approach to analysis (i.e.

[11]).

In this paper we choose the simulation approach, using synthetical loads. Actual load conditions in
a network defy accurate mathematical modeling. Solving particular problems tend to generate loads
that are not typical of actual loads.

Many load balancing algorithms that are compared are very susceptible to the choice of system
thresholds. In [12], a study was conducted relating to proper threshold selection. This information
was helpful for optimizing the Symmetric Broadcast algorithm that will be described. The existing
algorithms that we compare in this paper are briefly described below:

Random [5]
Jobs are randomly distributed between nodes.

As jobs are generated, if the system load of a given node is above a designated threshold,
the jobs are randomly distributed between the originating and neighbor nodes. Once a job
originating at one node has been received at another node, it is processed. Therefore, job
migration is not allowed. Single distribution messages can contain multiple jobs when more
than one job is to be sent from one node to another.

Gradient [6, 7]

Jobs proceed from overloaded to lightly loaded nodes. This is accomplished by a system wide
gradient that is maintained. The gradient is constructed as follows:

Each node maintains a load status flag. The value stored in this flag determines whether the
node is overloaded, lightly loaded, or moderately loaded. The setting of this value depends on
system thresholds.

An array (PRESSURE) is also maintained at each node. This array has one entry that corres-
ponds to each of its neighbors. Each of these entries contain the pressure (minimum number
of communication “jumps” to the nearest lightly loaded node) if a job is to be routed to the
neighbor that corresponds to this entry.

The pressure of any node is zero, if that node is lightly loaded. Otherwise, a node’s pressure



is calculated in accordance with the following formula:
min(PRESSURFE[n] for each neighbor node, n) + 1

Whenever the pressure of a node changes, that pressure is broadcast to all of its neighbors.
Note that because of network dynamics, the pressure value is only an approximation to the true
system value.

Under the gradient algorithm, a job can migrate many times before it is finally processed.
Receiver Initiated [5, 10]

Load balancing is triggered by a lightly loaded node. If a given node has a load value below
the system threshold value, it broadcasts a job request message to its neighbors. The node’s
job queue length is “piggy backed” to the request message.

Upon receipt of this message, each neighbor node compares its job queue length to that of the
requesting node. If the local queue size is greater, the neighbor node replies with a single job.

To prevent instability in light system load conditions, a time-out of one second is introduced to
wait for job replies. More specifically, the node will wait one second before initiating another
request for jobs.

It is possible for a job to be migrated multiple times using this algorithm before being processed.

Sender Initiated [5, 10]

Load balancing is initiated when nodes become overloaded. To prevent instability under heavy
system loads, each node exchanges load information with its neighbors. Load values are ex-
changed when a local job queue goes from 2°*! to 27 in length (or visa versa). In this way,
exchange of load information occurs less and less often as the system load increases.

When jobs are generated, they are distributed to lightly loaded neighbors. Once a job is
received from a neighbor node, it is processed. Multiple job migrations are not allowed.

Adaptive Contracting [5, 10]

When jobs are generated, the originating node, in parallel, distributes bids to its neighbor
nodes. The neighbor nodes respond to this bid with a message containing the number of jobs
that it has in its local queue.

The originating node will then distribute jobs to those neighbors that have system loads smaller
than an amount determined by a system threshold value. The number of jobs distributed
are computed to divide the jobs equally between the originating node and its lightly loaded
neighbors.

2.2 Definitions

The symmetric broadcast network(SBN) approach to load balancing is described in detail in [1, 2, 3].
Figure 1 provides an example of two communication paths in such a network. For completeness, the
definition that follows describes how to construct an SBN.
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Figure 1: Examples of Symmetric Broadcast Networks on a network of 8 nodes

An SBN is a multistage interconnection network for communication among processors. Each stage
of an SBN of dimension d has P = 2¢ processors. The SBN is constructed recursively as follows:

1. A single node forms the basis for a network of dimension zero.

2. An SBN of dimension d is constructed from a pair of SBN networks of dimension d — 1 by
adding one additional communication stage and additional required inter computer connections.
Specifically: (i) Node ¢, in Stage 0, is connected to node j = (i 4+ P/2) mod P of Stage 1 where
0 <7< P-—1. (ii) Node j in Stage 1 is connected to the node that was the Stage 0 successor
of node 7 in the SBN of dimension d — 1.

The idea behind the symmetric broadcast approach is to define unique communication patterns
between all of the nodes in the multicomputer network in such a way that:

e In a network of P processors, starting with any node, n, there are log P stages of communica-
tion.

e Each node of the network appears once in the log P stages of communication.

e When a particular node initiates load balancing activity, it communicates with the neighbors
that are defined by stage 1 of the communication path.

e T'he successors and predecessors to a given node of the network are uniquely defined by specify-
ing the node that originated the communication and indicating which stage of communication
is being processed.

As an example, consider a network of eight processors. Shown in Figure 1 are two communication
paths. A path in Figl.(b) can be obtained from a path in Figl.(a) by applying an exclusive or
operation to each node Figl.(a) with 5 (the originating node). Similarly, a unique symmetric com-
munication path can be constructed starting with any node of the network. Note that the network
of eight nodes shown in Figure 1 has 3 = log, 8 stages of communication. In this network, a node
in the first stage always contains one successor node; while nodes in the subsequent stages contain a
pair of successors.

Figure 1 is but one example of a symmetric broadcast network. Many other patterns can be de-
vised depending upon the network topology. As we will see, the symmetric broadcast network for a
hypercube utilizes a modified binomial spanning tree.
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Figure 2: Binomial Spanning Tree as a Hypercube Symmetric Broadcast Network

3 Symmetric Broadcast Network

3.1 Adaptations for Hypercubes

In this paper we adapt the SBN just defined for use on the hypercube topology. This refinement is
needed so that messages can be efficiently sent from one stage to the next without requiring extra
communication “jumps”.

The SBN that is used on a hypercube configuration utilizes a spanning binomial tree. An example
of such a tree is shown in Figure 2 for a hypercube of 16 processors. Note that the solid lines
represent the nodes of the spanning binomial tree. The dotted line connections are important for
implementing the load balancing algorithm that will be described. Note that the characteristics
presented in section 2 for an SBN are preserved. In addition, the modified binomial spanning tree
has the following important characteristics:

e The modified binomial spanning tree insures that all successor and predecessor nodes at any
communication stage are adjacent nodes in the hypercube.

e lor every originating node, there is one single final node.

e Some nodes have multiple predecessors. If all of the nodes are numbered using a binary bit
pattern of d bits, the number of predecessors can be determined by counting the number of
leftmost 1 bits of a given node’s binary pattern. Nodes with a 0 in the most significant bit
have single predecessor. There are 2272 nodes that have more than one predecessor.

3.2 Algorithm Description

We will now describe the load balancing algorithm that makes use of the symmetric broadcast net-
work just described.

There are two categories of load balancing messages processed by the network. The first category is
the balancing request message. T'his message is sent through the network to indicate that the system
load is out of balance. As this message is routed from stage to stage, the cumulative total of queued
network jobs is computed. The balancing message is not routed from one node to its successors until
all of the balancing messages have been gathered from its predecessors.
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When the final single node at the last stage of communication gathers all of the balancing messages
from its predecessors, the total system load is known with a high degree of accuracy. This informa-
tion is then broadcast via distribution messages back through the symmetric network.

It takes an average of O(log P) time to process a load balancing request if we assume that communic-
ation from one node to its neighbors is completed in O(1) time. However, it is possible that multiple
balancing requests can be processed simultaneously. Therefore a worst case time of O(log? P) could
be required. To reduce message traffic, a node will not initiate additional balancing requests until
all previous balancing requests that have passed through this node have been completely processed.

The second message category of load balancing messages are job distribution messages. This mes-
sage category is used for two purposes.

Firstly, job distribution messages are used to route the current total load level throughout the sys-
tem. This is the final step of processing a load balancing request. Each node, upon receipt of such
a message, updates its estimate of the average number of jobs queued per node in the network. This
estimate is called the system load level. Various threshold values (described below) are then updated
as well. The routing of job distribution messages is routed through the network using the symmetric
broadcast approach, in the same manner as described for the load balancing messages.

Secondly, job distribution messages are used to pass excess jobs from node to node. This action can
occur whenever a node has more jobs than its maximum threshold value. It can also be a response to
a predecessor’s need for jobs. This need is embedded in load balancing requests and in distributions
responding to these requests. Distribution messages of this type do not have to be gathered and
routed as previously described.

3.3 An Example

Shown in Figure 3 are the symmetric broadcast communication paths originating from node 3 and
connecting to the other nodes of the network. Table 1 indicates, for each node, the system load level,
the number of locally queued jobs, the minimum threshold, and the maximum threshold.

Note that node 3 has less jobs queued locally than its minimum threshold value. Therefore, a load
balancing request is necessary. The request is sent to the successor nodes 2, 1, and 7. Node 3 includes
its local queue size in the request message sent to its initial successor (node 2). Also included in all
of the request messages is the need of 1 job from each neighbor. This need is computed by using the
formula:

need = (System load — Queue size)/(number of neighbors)

Node 7 can immediately respond to this need because it has more jobs queued than indicated by its
system load level. The results from the above action is shown in Table 2.

The balance request, received by nodes 7, 1, and 2 are forwarded to the successor nodes at the next
level. Node 2 adds the size of jobs queued for processing at node 3 to the size of its own local queue
and routes this total to node 0. Node 0 responds to the need of node 2 for jobs by distributing one
job to node 2. Table 3 below shows the updated system parameters after completing this step.

Node 5 gathers the load balance requests from both of its predecessor nodes, 1 and 7, before for-
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Figure 3: Binomial Spanning Tree as a Hypercube Symmetric Broadcast Network

Table 1: Initial Load in an 8 Node Symmetric Network

Nodes | 0| 1| 2| 3| 4| 5] 6| 7
load | 6| 6| 6| 6| 12| 12|12 12
Queue | 7| 3| 2| 1| 7] 5|10 | 14
Min | 2 2| 2| 2| 2| 2| 2| 2
Max | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10

Table 2: Load after Balance Request Received by Nodes 7, 1, and 2
Nodes | O 1| 2| 3| 4| 5| 6| 7
load | 6| 6| 6| 6|12] 12|12 12
Queue | 7| 3| 2| 2| 7| 5|10 |13
Min | 2| 2] 2| 2| 2| 2| 2| 2
Max | 10 | 10 [ 10 | 10 | 10 | 10 | 10 | 10

Table 3: Load after Balance Request Received by Nodes 5, 6, and 0
Nodes | O 1| 2| 3| 4] 5] 6| 7
Load | 6| 6| 6] 6|12 |12 | 12| 12
Queue | 6| 3| 3| 2| 7| 5|10 13
Min | 2 2| 2| 2| 2| 2| 2| 2
Max | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10




Table 4: Final Load after Balancing Algorithm has Completed
Nodes | O 1| 2| 3| 4| 5| 6| 7
Load | 6| 6| 6| 6| 6| 6| 6| 6
Queue | 6| 6| 6| 7| 6| 6| 6| 6
Min | 2 2| 2| 2| 2| 2| 2| 2
Max | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10

warding the balance request to node 7. The total number of jobs that are queued for processing
continue to accumulate.

When node 4 receives the load balance request from all of its predecessors, (nodes 5, 6, and 0), it can
compute the updated system load(,S). Using this value and the network diameter(D), the minimum
threshold(m) and maximum threshold(M) values are computed as well. These computations are
shown in the equations below:

S =Jobs Queued/Total Processors = 6
M =S +25P =6+420/%=10
m = min(S5/2,2) =2

The distribution messages are returned through the network so that all of the nodes can update their
system threshold values. Excess jobs are appropriately distributed as well.

The distributions to arrive at the final job distribution are: one job from node 4 to node 0, one job
from node 0 to node 2, four jobs from from node 6 to node 2, one job from node 7 to node 5, two
jobs from node 2 to node 3, six jobs from node 7 to node 3, and three jobs from node 3 to node 1.
Table 4 shows the result of processing this load balancing request. As can be seen, the network load
is very well balanced.

3.4 Thresholds

Three thresholds are defined to control the load balancing operation. More specifically, a minimum
threshold, mazimum threshold, and transfer threshold are used. These thresholds minimize the load
balancing that is necessary and avoid excess distribution of jobs from one node to another.

Nodes with fewer jobs than the minimum threshold will initiate a load balancing request. The
threshold should be a low value (1 or 2) and should never be greater than the current system load
level. Therefore, in light load situations, unnecessary load balancing operations will not be triggered.

When the number of jobs queued at a given node exceeds the mazimum threshold value, excess jobs
are distributed to its neighbors. This parameter varies exponentially and is a function of current
system load level and the network diameter. As network load increases, it is not as necessary to
engage in load balancing activities because it is likely that all nodes have sufficient jobs to process.
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The formula that is used to compute the maximum threshold is M = 5 + where:

M = maximum threshold
S = present estimate of the system load value
D = number of communication stages in the network

If S < D, the maximum is less than D, and hence max = D.

The transfer threshold limits the maximum number of jobs that can be distributed at a time. The
purpose is to reduce network traffic that can result from excessive job migration. During testing, it
was found out that setting the transfer threshold to a small value does not degrade the effectiveness
of the load balancing algorithm.

3.5 Information Transfer Policy

There are two cases in which a given node can indicate to a neighbor node a need for jobs. These
cases are:

e When a load balancing request is routed to the next stage of nodes.

e When the updated system load level is distributed through the network.

In both of these cases, a node calculates its need for jobs by subtracting the number of jobs queued
for processing from the current system load level. The transfer threshold effectively limits the effect
of this calculation.

4 Implementation Details

4.1 Data Structures

The following data structures are required at each node in order to accomplish load balancing;:

e The current estimate of the average number of jobs per node; the minimum, maximum, and
transfer thresholds.

e A counter to track the number of load balancing requests that have passed this node. This
count is increased when a load balancing request is received or initiated. It is decremented
upon receipt of a distribution message that triggers the updating of current system load level.

e Because multiple load balancing requests can be processed simultaneously, arrays are used
to to gather balancing and distribution messages. Note that the count of predecessor nodes
corresponding to a given node is determined by the applying the exor operation to a given
node’s binary number and the binary number of the node that originated the load balancing
request. Since in any communication path there are 29=2 nodes in the network that must gather
more than one message (d is the number of communication stages in the symmetric broadcast
network), these arrays should be dimensioned at 20-2,

During processing, to determine which array entry is to be used, a node applies the ezor
operation to the lower d — 2 bits of the node’s binary number with the binary number of the
node that originated the load balancing request.
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The first of the three arrays is used to count the number of load balance messages gathered
from predecessor nodes for a particular communication path from an originating node. The
second array, similarly, counts the number of distribution messages gathered before updating
the system load level. The final array is used to accumulate the estimate of the total system
load as balance messages are received from predecessor nodes.

4.2 Initiating Load Balancing Requests

Load balancing requests are initiated when the number of jobs queued for processing at a given
node fall below the minimum threshold. Load balancing can also occur if the node at the final stage
of communication receives a distribution of jobs that cause the length of its queue to exceed the
maximum threshold.

If there are no load balancing requests outstanding, the initiating node:

e Indicates that there are log P distribution messages to be gathered before this request is com-
pleted.

e Increments the count of load balancing messages that are being processed.

e Routes the load balancing request messages to all of its stage 1 neighbors. The local queue
size is included in the message that is directed to the node’s first successor. Also included in
all balance messages is the node’s need for jobs as described in Section 3.3.

If one or more load balancing requests are already outstanding, the balance initiating function exits
with no action taken.

4.3 Receiving Load Balancing Requests

When a load balancing request is received, any needed jobs, if possible, are sent back to the prede-
cessor node.

If this is the first balance message received from a given predecessor node:

e Counts of balance and distribution messages to be gathered are initialized.

e 'T'he number of balance requests that are being processed are incremented.
If more balance messages are still to be gathered:

e The total number of system jobs queued for processing is accumulated.

e The count of balance messages still to be received are updated.

If this is the last balance message to be received, the program decides whether this is the last stage
of communication. If no, the balance messages are routed to the neighbor nodes at the next stage.
The local queue size is included in the message that is directed to the node’s first successor. Also
included in all load balance messages is the node’s need for jobs as described in Section 3.3.

If this is not the last stage of communication:
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e The estimate of the system load level is adjusted.
e T'he count of balancing requests being processed is decremented.

e The load update job distribution messages (including any need for jobs) are routed to all of
the node’s first stage neighbors.

4.4 Initiating Job Distributions

If balancing requests are being processed, no action is taken.

Otherwise, if the queued number of jobs to process exceed the maximum threshold, a distribution
message is sent to all stage 1 neighbors. T'he number of jobs distributed is computed by subtracting
the system load level from the size of the local job queue. Note that the transfer threshold limits the
maximum number of jobs that can be distributed.

4.5 Receiving Job Distributions

When a job distribution is received by a node:

e All jobs received are added to the local job queue.
o If the predecessor node is lightly loaded, return the needed jobs if possible.

o If the received distribution message requires a system load update and all predecessor distribu-
tion messages have been gathered, (i) update system load and threshold values, (ii) decrement
the count of balance requests being processed, and (iii) route the distribution message to the
next stage neighbors.

o If this is the last stage of communication and there is still an excess of messages, another load
balancing request is triggered. Otherwise, route the excess to the nodes at the next stage.

5 Testing Procedures

5.1 Simulation Environment

The PVM (Parallel Virtual Machine) is used to create a parallel environment with up to 32 processes.
A simulation program spawns the appropriate number of child processes to create the hypercube
environment. The list of all process identifiers and an initial load of jobs are routed through the
hypercube to all of the remote nodes. Each node then begins to processes the initial job list that it
receives and makes use of the load balancing algorithm to even the work load among the other nodes
of the network.

In addition to the initial load, each node generates additional jobs to be processed. Namely, ten job
creation cycles are processed. Job generation at each node follows a Poisson distribution. During
each of the job creation cycles the number of jobs that are generated at each node are varied. This is
accomplished by randomly picking different A constants which control how many jobs are generated.
Therefore, both heavy and light system load condition are simulated.

Jobs are processed by delaying for the designated time period. Each process has a simulation clock

12



that accurately measures job processing and idle time.

When all of the jobs that were generated (initially and during the 10 job creation cycles) have been
processed, the program terminates.

The programs can be given differing run time parameters to vary the size of the initial job load,
the length of each job creation cycle, the average job length, and the average number of jobs to be
generated per job creation cycle. In addition, the initial load can be randomly distributed to all
nodes (normal load); or it can be distributed to a small subset of nodes (extreme load).

Three test runs have been prepared:

Figure 4 - Ten jobs per node are randomly distributed throughout the network as an initial load.
The jobs generated during execution are more than can be processed by the network. Job
duration averages one second. This test simulates a Heavy System Load.

Figure 5 - Fifty jobs are distributed to a small subset of nodes as an initial load. A light load
of jobs is generated as the load balancing algorithm is processed. Job duration averages two
seconds. This test simulates the 7Transition from Heavy to Light System Load. 'The load
balancing algorithm also needs to adjust for the initial imbalance in the load at each node.

Figure 6 - A small number of jobs are initially distributed to a small subset of nodes. A light load
of jobs are created as the algorithm executes. This test simulates a Light System Load.
5.2 Alternate Load Balancing Algorithms

Analogous programs have been implemented to compare the performance of the Symmetric Broadcast
algorithm to other popular algorithms. Random, Gradient, Sender Initiated, Receiver Initiated,
Adaptive Contracting, and no balancing programs have been tested in the same way as described
above.

6 Summary of Experimental Results

6.1 Performance Metrics

The data and line charts that are included in Figures 4, 5, and 6 measure the comparative performance
of the various balancing algorithms. The data records the statistical counts and totals that were
obtained during execution of the simulation.

The X axis of the line charts show the number of nodes that were tested. The Y axis tracks variables
that are useful to measure.

The following charts are included for each test:

(a) Message Traffic Comparison by Node which measures the total number of load balancing
messages that were sent by any of the nodes.

(b) Maximum Variance in Node Processing which measures the difference in processing time
between the most busy node of the network and the least busy node.
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(¢) Total Time to Compute which measures the time it took for the longest running node to
complete its processing.

(d) Maximum Variance by Node in Idle Time which measures the time difference between
the most idle and the least idle node.

(e) Total Jobs Transferred which measures the total number of job transfers from one node to
another that occurred.

6.2 Summary

As expected, the program with no load balancing performs by far the worst. The Random al-
gorithm, although providing significant improvement, nevertheless is less effective than the remaining
algorithms.

The Sender Initiated and Receiver Initiated algorithms both perform better than the Random al-
gorithm. In light to moderate loads, the receive algorithm has the disadvantage of generating more
network traffic. Both of these approaches have inherent deficiencies.

Receiver Initiated algorithms, for example, tend to result in excessive load balancing activity at low
system loads. this is because all nodes are polling neighbor nodes to find jobs that they can process.
To overcome this deficiency, a time delay of one second has been introduced after a polling operation
has been completed. This delay can unnecessarily increase the idle time, however.

Sender Initiated algorithms, on the other hand, can cause job thrashing to occur at high system
loads. This has been overcome by reducing the number of job transfers that are done at high load
levels. In addition, by limiting the migration of jobs, the potential for jobs to be routed back and
forth is greatly reduced. The down side of these refinements, is that even in high load situations, it
is possible for one or more nodes to be lightly loaded. Limiting job migration can sometimes prevent
a “good” transfer decision to be made to make up for prior “poor” transfers.

The Gradient algorithm balances the load quite well. It has none of the above deficiencies. Unfor-
tunately, lightly loaded nodes can sometimes receive too many messages from the overloaded nodes.
This often results in excessive network traffic.

The Adaptive Contracting(acwn) and the Symmetric Broadcast(symmetric) algorithms were able to
more evenly balance the generated system load than any of the other algorithms that were described.
Of the two, the Symmetric method achieved the best results.

However, this improvement is achieved at the expense of more job transfers. During testing, it was
apparent that the Symmetric algorithm is very sensitive to the threshold values that are chosen. It
is desirable to choose these values in such a way as to minimize the processing of load balancing
requests, since the associated processing is “expensive”.

7 Conclusions and Future Research

The algorithm using symmetric broadcast networks has been proven to be an excellent approach to
load balancing. The empirical results show that this approach can be used to very effectively balance
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nodes acwn gradient nobal random receive send sbhc nodes acwn gradient nobal random receive send sbhc
2 109 57 0 15 13 35 46 2 0.10 4.10 47.70 13.20 34.40 0.10 0.50
4 299 460 0 76 165 156 130 4 3.90 3.50 98.40 45.20 0.80 15.10 1.60
8 1075 1079 0 183 433 558 836 8 6.50 7.60 133.40 82.90 65.10 16.80 4.10
16 2460 6118 0 557 1380 1297 2012 16 10.20 5.90 229.40 101.49 89.70 22.10 22.50
32 6026 12149 0 177 4382 3207 8233 32 24.80 17740 31720 15350 104.30 151.20 25.60
Message Traffic Comparison by Maximum Variance in Node
Node Processing
—&— acwn —&— acwn
—l— gradient 400.00 —— gradient
nobal 300.00 nobal
random 200.00 random
—¥— receive loggg —¥— receive
—&— send —&— send
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Figure 4: Heavy System Load
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Figure 5: Transition from Heavy to Light System Load
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Figure 6: Light System Load
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network load and is, in fact, superior to the other algorithms analyzed.

As we discussed in section 6, the choice of thresholds is critical to achieving effective load balan-
cing while minimizing the network traffic required to achieve these results. A scientific study that
determines how these thresholds should be set is an important area for consideration. In addition,
further adaptations of the symmetric broadcast approach for use on other network topologies should
be analyzed. Generalizations of the algorithm for use on a wide variety of multicomputer configura-
tions would greatly broaden its possible applications.

Another area for research is to analyze the effect of altering the the definition of “system load”. In
this paper, local queue size determines system load. However, other parameters such as job length,
communication cost, and execution dependencies could alter how balancing should be accomplished.
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