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Abstract

Dynamic unstructured mesh adaptation is a powerful technique for solving com-
putational problems with evolving physical features; however, an efficient parallel
implementation is rather difficult because of the load imbalance that mesh adapta-
tion creates. To address this problem, we have developed two dynamic load balanc-
ing strategies for parallel adaptive irregular applications. The first, called PLUM,
is an architecture-independent framework particularly geared toward adaptive nu-
merical computations and requires that all data be globally redistributed after each
adaptation to achieve load balance. The second is a more general-purpose topology-
independent load balancer that utilizes symmetric broadcast networks (SBN) as the
underlying communication pattern, with a goal to providing a global view of sys-
tem loads across processors. Results indicate that both PLUM and the SBN-based
approach have their relative merits, and that they achieve excellent load balance at
the cost of minimal extra overhead.
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1 Introduction

The ability to dynamically adapt an unstructured mesh is a powerful tool for
solving computational problems with evolving physical features; however, an
efficient parallel implementation is rather difficult because of the load imbal-
ance that mesh adaptation creates. Dynamic load balancing aims to balance
processor workloads at runtime while attempting to minimize the communica-
tion between processors. A problem is therefore load balanced when processors
have nearly equal loads with reduced communication among themselves. The
ultimate objective, of course, is to assign work to processors so that the total
simulation runtime is minimized. With the proliferation of parallel computing,
dynamic load balancing has also become extremely important in areas other
than scientific computing like task scheduling, discrete event simulation, and
web server applications.

Standard fixed-mesh numerical methods to solve a full-scale realistic problem
can be made more cost-effective by locally refining and coarsening the com-
putational mesh to capture physical phenomena of interest. However, when
executed on a parallel machine, mesh adaptation could cause load imbalance
among the processors. This, in turn, would lead to idle processors and ad-
versely affect the total execution time. It is therefore imperative to have an
efficient dynamic load balancing mechanism as part of the overall solution
scheme. In addition, since the computational mesh will be frequently adapted
for unsteady flows, the runtime load may also need to be frequently rebalanced
(in the worst case, at each adaptation step). This implies that the dynamic load
balancing procedure itself must not pose a major overhead. Although several
dynamic load balancers have been proposed for multiprocessor platforms [1-
6], most of them are inadequate for adaptive unstructured grid applications.
This motivates our work.

Recently, we have developed a novel method, called PLUM [7], that dynami-
cally balances processor workloads with a global view when performing adap-
tive numerical calculations in a parallel message-passing environment. The
computational mesh is globally repartitioned from scratch after each adapta-
tion, but a smart remapping technique is used to reassign the new partitions
among the processors in a way that minimizes the data movement overhead.
This redistribution cost can be estimated using a variety of metrics. The new
partitioning is accepted if the migration cost is offset by the gain resulting
from a better load balance. A brief description of PLUM is given in Section 3.

We also describe another new dynamic load balancing strategy that is based on
utilizing a robust communication pattern among processors, called symmetric
broadcast networks (SBN), originally proposed in [8]. Our earlier experiments
with synthetic loads [2] have demonstrated that an SBN-based load balancer



achieves superior performance when compared to other popular techniques [9-
12]. The SBN algorithm is adaptive and decentralized in nature, and can be
ported to any topological architecture through efficient embedding techniques.
An overview of this approach is given in Section 4.

Both PLUM and the SBN-based load balancing strategies have been imple-
mented on IBM SP2 and SGI Origin2000 machines, and their performance
analyzed for an adaptive unsteady workload which is generated by propagat-
ing a simulated shock wave through a cylindrical volume. Results, presented
in Section 5, show that the SBN approach reduces the data remapping cost at
the expense of a higher interprocessor communication overhead. In dynamic
applications where the data redistribution cost dominates the processing and
communication costs, this is an acceptable trade-off.

2 Dynamic Load Balancing

Dynamic load balancing for unstructured grids consists of two main compo-
nents: partitioning the computational mesh (to balance processor workloads
and minimize runtime interprocessor communication), and mapping the parti-
tions to processors (to minimize data movement). Diffusive partitioners mod-
ify existing partitions, while global partitioners generate new partitions from
scratch that need to be remapped to processors.

2.1 Partitioning

Graph partitioning is NP-complete; thus, research has been focused on de-
veloping efficient heuristic algorithms. Several graph partitioners have been
developed over the years, particularly for static grids. Significant progress has
been made in improving the partitioning heuristics as well as in generating
high-quality software.

The most general approach to graph partitioning is to use generic combinato-
rial optimization techniques based on cost functions. Simulated annealing [13]
and genetic algorithms [14] are two such techniques but require properly set-
ting a large number of parameters, making it difficult to obtain successful
partitionings efficiently. Clustering is another intuitive approach. The greedy
strategy described in [15] and bandwidth reduction algorithms like Reverse
Cuthill-McKee (RCM) [16] belong to this class of partitioners. The bad as-
pect ratio problem associated with RCM can be somewhat reduced if the
scheme is used recursively, as in recursive graph bisection (RGB) [17].



Geometry-based algorithms partition the graph by exploiting its geometric
properties. Recursive coordinate bisection (RCB) [17] uses spatial geometric
coordinates, whereas recursive inertial bisection (RIB) [18] is based on inertial
coordinates. A completely different class of algorithms is based on spectral
methods. Recursive spectral bisection (RSB) [17] is the most famous of such
partitioners. Multidimensional spectral partitioning [19] improves RSB run-
times by performing a k-way partitioning at each recursive step. Many of these
geometric and spectral methods are used with the Kernighan-Lin refinement
strategy [20] to improve the partitioning quality.

However, the most successful state-of-the-art partitioners use multilevel algo-
rithms [21-23] that reduce partitioning times considerably by contracting the
graph, partitioning the coarsened graph, and then refining it to obtain a par-
tition for the original graph. ParMETIS [22] and JOSTLE [23] are currently
the fastest multilevel schemes, are available in various flavors, and can be run
either as partitioners from scratch or as diffusive repartitioners.

2.2 Remapping

The overall effectiveness of repartitioning algorithms is determined by how
successful they are in load balancing the computations while minimizing the
edge-cut, as well as reducing the cost associated with redistributing the load
in order to realize the new partitioning. Data redistribution is generally con-
sidered the most expensive phase in dynamic load balancing. The migration
of mesh objects incurs a number of costs such as the communication overhead
of remote-memory latency, and the computational overhead of rebuilding in-
ternal and shared data structures. Since global partitioners do not consider
the redistribution cost when generating subdomains, an intelligent algorithm
is needed to map the new partitions onto the processors such that the data
migration cost is minimized. Diffusive repartitioners explicitly attempt to min-
imize this data redistribution cost when generating new subdomains. These
strategies are generally successful when there are gradual changes in the load
distribution. However, experimental results [24,25] have indicated that diffu-
sive schemes may not be well suited for problems which incur dramatic shifts
in processor workloads between redistributions, such as unsteady adaptive
applications.

Diffusion was first presented as a method for load balancing in [1]. The pro-
cess can be mapped onto the diffusion equation, and much is known about
its properties. In particular, it can be shown that this process will eventually
converge. A nonlinear variant of this scheme which considers strip decomposi-
tions of the domain was presented in [5] and shown to have better convergence
characteristics than the standard diffusion method.



Tiling is another approach [26] where each processor is considered a neighbor-
hood center, a neighbor being any processor with which the given processor
shares its subdomain boundary. Processors within a neighborhood are bal-
anced with respect to one another using local performance measurements.
Iterative tree balancing (ITB) [27] follows the basic tiling strategy; however,
the algorithm views workload requests as forming a forest of trees rather than
considering a neighborhood of processors. ITB incorporates a more global in-
formation, and has an improved worst case load imbalance if enough iterations
are permitted.

Local iterative techniques are sometimes unsuitable for dynamically balancing
unsteady numerical calculations. Such applications are prone to shifting the
load distribution from one adaptation phase to the next, causing small regions
of the domain to suddenly incur high computational costs. Local diffusion
techniques would require several iterations before global convergence, or accept
an unbalanced load in exchange for faster performance. Also, by limiting load
movement to nearest neighbors, several hops may be needed for a work unit to
arrive at its final destination. Since the remapping must be frequently applied,
its cost can become a significant part of the overall performance and must
therefore be minimized. By moving large chunks of work units directly to their
destinations, the high start-up cost of interprocessor communication can be
amortized. This is the strategy that has been implemented within the PLUM
and SBN frameworks.

3 Architecture-Independent PLUM Load Balancer

PLUM is an automatic and portable load balancing environment, specifically
created to handle adaptive unstructured grid applications. It differs from most
other similar load balancers in that it dynamically balances processor work-
loads with a global view. Prior work [7,24,28] has successfully demonstrated its
viability on large numbers of processors, its portability across computer plat-
forms, and its effectiveness for various test cases involving adaptive unstruc-
tured grids. In this paper, we compare its performance with the SBN-based
approach (described in Section 4).

Figure 1 provides an overview of PLUM. After an initial partitioning and
mapping of the unstructured grid, a solver executes several iterations of the
application. A mesh adaptation procedure is invoked when the computational
mesh needs to be refined or coarsened. PLUM then gains control to determine
if the workload among the processors has become unbalanced due to the mesh
adaptation, and to take appropriate action if necessary. If load balancing is
required, the adapted mesh is repartitioned and reassigned among the pro-
cessors so that the cost of data movement is minimized. If the expected gain
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Fig. 1. Overview of PLUM load balancer.

resulting from a better load balance exceeds the estimated remapping cost,
the grid is remapped among the processors before resuming the computation.
A brief description of the salient features of PLUM is given in the following
subsections.

3.1 Reusing the Initial Dual Graph

PLUM always uses the dual of the initial mesh for load balancing, thus keeping
the complexity of the partitioning and reassignment phases constant during
the course of an adaptive computation. New computational grids obtained by
adaptation are translated by changing the weights of the vertices and edges of
the dual graph. The weight, W,,, of a dual graph vertex v models the computa-
tional workload, and is set to the number of leaf elements in the corresponding
refinement tree. This is because only those elements with no children partici-
pate in the actual computation. The weight, R,,, of v models the redistribution
cost, and is the total number of elements in the refinement tree. This is be-
cause all descendents of the root element must be moved from one partition
to another when the load is to be rebalanced. Lastly, the weight, C,, of a dual
graph edge e models the communication cost, and is set to the number of
corresponding faces in the computational mesh. These three weights are used
to balance the workload among processors, minimize the runtime communi-
cation, and optimize the data movement cost after a repartitioning.

3.2 Parallel Repartitioning

After a mesh adaptation, PLUM usually needs to rebalance the processor
workloads and minimize the interprocessor communication. PLUM can use
any general-purpose partitioner; however, for it to be viable, the repartition-



ing must be performed rapidly. As discussed in Section 2.1, several excellent
parallel partitioners are now available. For the results presented in this pa-
per, the ParMETIS parallel multilevel partitioner was used [22]. It reduces
the size of the graph by collapsing vertices and edges, partitions the smaller
problem, and uncoarsens the graph back to the original size. ParMETIS uses
a greedy graph bisection algorithm for partitioning the coarsest graph, and
uncoarsens it by using a combination of boundary greedy and Kernighan-
Lin [20] refinement. A detailed performance comparison of ParMETIS with
other partitioners is given in [24].

3.8  Processor Remapping

The goal of processor reassignment is to find a mapping between partitions
and processors that minimizes the data redistribution cost. In theory, the
number of new subdomains can be an integer multiple F' of the number of
processors. Each processor is then assigned F' unique subdomains. The ratio-
nale for allowing multiple subdomains per processor is that remapping at a
finer granularity reduces the volume of data movement at the cost of a slightly
larger partitioning time. We first compute a similarity measure that indicates
how the new subdomains are distributed over the P processors. The measure
is represented as a matrix S, where entry S;; is the sum of the R, values of all
the dual graph vertices in new partition j that already reside on processor .
Figure 2 shows an example of a similarity matrix for four processors where
two partitions are assigned to each processor. Only the non-zero entries are
shown for clarity.

New Partitions

01 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7
0 .ﬁ. 120 7.
. 500 . 443 ..
129|130 229 446

EmEEm
30‘1‘2‘1‘032

New Processors

Old Processors

Fig. 2. A similarity matrix after processor reassignment.

Various cost functions are usually needed to solve the processor reassignment
problem using S for different machine architectures. We have developed three
general metrics: TotalV, which minimizes the total volume of data moved
among all the processors; MaxV, which minimizes the maximum flow of data
to or from any single processor; and MaxSR, which minimizes the sum of the
maximum flow of data to and from any processor. Experimental results [7,28]



have indicated the usefulness of these metrics in predicting the actual remap-
ping cost.

The TotalV metric assumes that remapping time will be reduced by decreas-
ing network contention and the total number of elements moved. Finding
the optimal mapping for TotalV can be reduced to solving the maximally
weighted bipartite graph (MWBG) problem. The optimal algorithm has been
implemented with a runtime of O(|V|?) [28], where |V| represents the number
of partitions. The metric MaxV, unlike TotalV, considers data redistribution
in terms of solving a load imbalance problem, where it is more important to
minimize the workload of the most heavily-weighted processor than to min-
imize the sum of all the loads. We can solve for the MaxV metric optimally
by considering the problem of finding a maximum-cardinality matching whose
maximum edge cost is minimum. We refer to this as the bottleneck mazimum
cardinality matching (BMCM) problem. The optimal BMCM algorithm has
been implemented with a runtime of O(|V|*/2|E|log|V|) [28], where |E| is
the number of entries in the similarity matrix (|E| ~ |V|?). Our third metric,
MaxSR, is similar to MaxV in the sense that the overhead of the bottleneck
processor is minimized during the remapping phase. MaxSR differs, however,
in that it minimizes the sum of the heaviest data flow from any processor and
to any processor. This is referred to as the double bottleneck maximum car-
dinality matching (DBMCM) problem. We have developed an algorithm for
computing the minimum DBMCM with a runtime of O(|V|'/2|E|?log|V']) [28].

A greedy heuristic algorithm for solving the reassignment problem in O(|E]|)
steps has also been developed, and shown to generate a solution that can
never result in a data movement cost that is more than twice that of the opti-
mal TotalV assignment [7]. A detailed comparison of reassignment algorithms
using different metrics is given in [28].

3.4 Remapping Cost Model

Our redistribution algorithm consists of three major steps: first, the data ob-
jects moving out of a partition are stripped out and placed in a buffer; next,
a collective communication appropriately distributes the data to its destina-
tion; and finally, the received data is integrated into each partition and the
boundary information is consistently updated. Performing the remapping in
this bulk fashion, as opposed to sending small individual messages, has sev-
eral advantages including the amortization of message start-up costs and good
cache performance. However, a model is needed to quickly predict the expected
redistribution cost for a given architecture.

The expected time for the redistribution procedure can be expressed as 7y x



MaxSR + O, where MaxSR = max(ElemsSent) + max(ElemsRecd), y represents
the total computation and communication cost to process each redistributed
element, and O is the predicted sum of all constant overheads [7]. This model
demonstrates the need to use the MaxSR metric for processor reassignment
because the computational overhead of our remapping algorithm can be re-
duced by minimizing MaxSR. Since the computational workload is architecture
independent, we are effectively solving two load balancing problems separated
by a collective communication. Moreover, by reducing MaxSR, we can achieve
a savings in the communication overhead on many bandwidth-rich systems.
The values of v and O can be obtained for each architecture by simple exper-
iments [7].

4 Topology-Independent SBN-Based Load Balancer

Our second load balancer is based on a symmetric broadcast network (SBN),
which takes into account the global view of system loads among the processors.
The SBN is a robust, topology-independent communication pattern (logical or
physical) among the processors of a multicomputer system [8]. Before utilizing
it to load balance adaptive grids, let us give a brief overview of SBN.

4.1  Symmetric Broadcast Networks

An SBN of dimension d > 0, denoted as SBN(d), is a (d + 1)-stage inter-
connection network with P = 2% processors in each stage. It is constructed
recursively as follows:

e A single processor forms the basis network SBN(0) consisting of a single
stage, denoted as stage 0.

e For d > 0, an SBN(d) is obtained from a pair of SBN(d — 1)s as follows:
(i) The processor labels in the first SBN(d — 1) remain unchanged, but the
processors of the second SBN(d — 1) are relabeled from 2%~ to 2¢ — 1;

(ii) Increment the identifiers of the existing stages by one, and create a new
communication stage 0 containing processors 0 through 2¢ — 1;

(iii) Connect processor 7 in stage 0 to processor j = (i + P/2) mod P of
stage 1, and processor j in stage 1 to the processor in stage 2 (if present)
which was the stage 0 successor of processor 7 in SBN(d — 1).

Figure 3 depicts an SBN(2), recursively constructed from two SBN(1)s. Note
that an SBN(d) defines unique communication patterns (or broadcast trees)
among the processors in the network. Precisely, for any source processor p at
stage 0, where 0 < p < P, there exists a unique broadcast tree T, of height



Fig. 3. Construction of SBN(2) from a pair of SBN(1)s. The new connections are
shown by solid lines and the original connections by dashed lines.

d = log P such that each of the 2¢ processors appears exactly once.

Furthermore, the SBN communication pattern for any source processor p can
be derived from the template tree with processor 0 as the source. For example,
let N be a processor at stage s in the broadcast tree T),. Then Nj = Ng @ p,
where @ is the exclusive-OR operator, thus leading to T, = T, @ p. The prede-
cessor and successors of each processor are also uniquely defined by specifying
the source and the communication stage. As shown in [29], the versatility of the
SBN lies in its efficient embeddings into other topologies such as hypercubes
and meshes.

4.2 Load Balancing

The proposed SBN-based load balancer can be classified as adaptive, decen-
tralized, and global, making it effective for adaptive grid applications. The
SBN load balancer processes two types of messages: balance messages and
distribution messages.

A balance message is broadcast when a processor p determines that its weighted
queue length QWgt(p) is less than a minimum threshold, MinTh. A balance mes-
sage is also broadcast if QWgt(p) is greater than a maximum threshold, MaxTh,
or if distributing the excess workload will result in other processors exceeding
MaxTh. As the balance message is propagated through the SBN, the global
weighted queue length (GWLen) and the weighted system load level (WSysLL)
are computed. Distribution messages are used to migrate work when QWgt(p)
is greater than MaxTh. After WSysLL is calculated, a distribution message is
broadcast through the SBN in order to route work to the lightly-loaded pro-
cessors and to update the threshold values (MinTh and MaxTh). As a result, all
the processor workloads are balanced.

We now discuss the various parameters and other details involved in the SBN-

based load balancer implementation, a preliminary version of which appeared
in [30].
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e Weighted Queue Length:

The queue length (computation time) of a processor p is not an accurate
estimate of the total time required to complete its work, particularly in
applications where the grid is adapted. We therefore define a metric called
weighted queue length, QWgt(p), that also considers the communication and
redistribution costs. If W, is the computational cost to process a dual graph
vertex v, C? is the communication cost to interact with the vertices adjacent
to v but whose data sets are not local to p, and R? is the redistribution cost
to copy the data set for v to p from another processor (see Section 3.1),
then

QWgt(p) = Y, (W,+Cl+RDY).

v assigned to p

Note that if the data set for v is already assigned to p, no redistribution cost
is incurred (RP = 0). Similarly, if the data sets of all the vertices adjacent
to v are also already assigned to p, the communication cost, C? = 0.

e Weighted System Load:
The weighted system load is defined as:

WSysLL =

p 2 Wt <p)} ,

where P is the total number of processors used. Assuming that the work-
load is perfectly balanced among the processors, WSysLL estimates the time
required to process the grid and reflects the computation, communication,
and redistribution costs in the current grid-to-processor assignment. Hence,
a global view of the system is captured.
e Prioritized Vertex Selection:
When selecting dual graph vertices to process, the SBN load balancer uti-
lizes the underlying grid structure to defer execution of boundary vertices
as long as possible because they may be migrated for more efficient execu-
tion. Thus, the vertex to be processed next is selected such that it mini-
mizes the overall edge cut of the adapted grid. To enable this, a priority
min-queue is maintained, where the priority of vertex v in processor p is
given by (C? + RP)/W,. Therefore, vertices with no communication and
redistribution costs are executed first, while those with high communica-
tion or redistribution overhead relative to their computational weight are
processed last. Basically, internal vertices are processed before those on par-
tition boundaries.
o Differential Edge Cut:

To balance processor workloads, an optimal policy for vertex migration is
required. Assume that processor p needs to reassign some of its vertices to
another processor g. The SBN load balancer running on p calculates the
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differential edge cut !, ACut(v), for each vertex v that is queued locally as
follows:

ACut(v) = R — R? 4+ C4 — CP.

A negative value indicates a reduction in communication and redistribution
costs if v is migrated from p to ¢, hence favoring the migration of vertices
with the largest absolute reduction in these costs. The vertex w with the
smallest value of ACut(w) is chosen for migration. The vertices adjacent
to w that are queued for processing on p are also targeted. The entire
process is repeated if more work needs to be transferred from p to ¢. This
migration policy therefore strives to maintain or improve the cut size during
the execution of the load balancing algorithm.

Data Redistribution Policy:

Data is redistributed in a lazy manner, i.e. the data set for a vertex v
in processor p is not moved to processor ¢ until ¢ is ready to execute v (g
notifies p when this happens). Moreover, the data sets of all vertices adjacent
to v that are assigned to ¢ are transferred as well. This policy significantly
reduces the redistribution and communication costs by avoiding multiple
migration of data sets and having resident on ¢ all adjacent vertices of v
while ¢ processes v. In other words, the communication overhead is reduced
by considering the underlying grid structure.

4.8 Differences with PLUM

The SBN-based load balancer differs from PLUM in several important respects
that are itemized below:

Load balancing under PLUM requires the temporary suspension of useful
processing in order to generate new partitions and redistribute the data.
Instead, the SBN-based approach allows processing to continue while the
load is dynamically balanced. This feature makes it possible to use latency-
tolerant techniques to hide the communication and redistribution costs dur-
ing processing.

Under PLUM, the suspension of processing and subsequent repartitioning
does not guarantee an improvement in load balance quality. This is because
the adapted grid is not redistributed if the remapping cost exceeds the ben-
efits of load balancing. In contrast, the SBN approach will always improve
the load balance among the processors.

PLUM redistributes all necessary data to the appropriate processors be-
fore the computations are resumed. This predictive remapping improves

! Here we are deviating from the usual definition of edge cut to account for the

dynamic nature of the SBN-based load balancer.
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the overall efficiency of the grid refinement procedure. SBN, however, re-
duces redistribution and communication costs by migrating remote data to
a processor only when it is ready to process the data.

5 Experimental Results

All experiments reported in this paper were performed on the SP2 and the
Origin2000 machines at NASA Ames Research Center. The IBM 9076 Scal-
able POWERParallel SP2 is a distributed-memory system where the nodes,
each consisting of a six-instruction issue superscalar RISC6000 processor, are
connected through a high-performance switch called the Vulcan chip. The
topology of the switch is an any-to-any packet switched network similar to an
Omega network. The SGI Origin2000, on the other hand, has a distributed
shared-memory architecture and is the first commercially available 64-bit
cache-coherent nonuniform memory access (CC-NUMA) system. A small high-
performance switch connects two CPUs (which are superscalar RISC proces-
sors), memory, and I/O. This module, called a node, is then connected to
other nodes in a hypercube fashion.

Fig. 4. Initial and adapted meshes (after levels 1 and 5) for the simulated unsteady
experiment.

To study the effectiveness of our load balancers for realistic applications, a
computational grid is used to simulate an unsteady environment where the
adapted region is strongly time-dependent. This experiment is performed by
propagating a simulated shock wave through the initial grid shown at the top
of Fig. 4. The test case is generated by refining all elements within a cylindrical
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volume moving left to right across the domain with constant velocity, while
coarsening previously-refined elements in its wake. Performance is measured at
nine successive adaptation levels, during which the size of the computational
mesh increased from 50,000 elements to 1,833,730.

The following metrics were chosen to compare the performance of PLUM and
the SBN-based load balancers. Recall that v denotes a vertex to be processed
and P is the total number of processors.

e Load Imbalance Factor:
This metric is the ratio of the workload on the most heavily-loaded processor
to the average load across all processors, and should be as close to unity
as possible. For PLUM, the workload on processor p is the sum of the W,
weights for all dual graph vertices v assigned to p. For the SBN-based load
balancer, this metric is formulated as

LoadImb = max Qwgt(p) / WSysLL.
P

e Cut Percentage:
This metric represents the runtime interaction between adjacent dual graph
vertices residing on different processors, and should be as small as possible.
For PLUM, it is the weighted percentage of all the edges that are cut by
the ParMETIS partitioner. In the SBN approach, it is calculated as

Cut% =100 x > > oo > Ce,

pEP v assigned to p e in mesh

where C, is the weight of edge e in the initial dual graph.

e Maximum Redistribution Cost:
Since a processor can either be sending or receiving data, the overhead for
the two phases is modeled as a sum of two costs in this metric:

MaxSR:max{ > Rf,’} + max{ > R{,’}.

P P
pe v sent from p Pe v recv by p

Recall from Section 3.4 that minimizing MaxSR guarantees a reduction in
the total data redistribution overhead.

Both the PLUM and the SBN-based load balancers were implemented using
the MPI message-passing library. Performance results, averaged over nine lev-
els of adaptation, are presented in Table 1. These values were obtained on the
Origin2000, and are platform independent. Both strategies achieve excellent
load balance quality (LoadImb); however, the SBN-based algorithm signifi-
cantly reduces the redistribution cost (MaxSR) from that obtained with PLUM,
more so for the larger numbers of processors. Compared to PLUM, the SBN
algorithm also incurs a smaller overhead in terms of the total communication

14



Table 1
Performance results of the PLUM and the SBN-based load balancers

LoadImb Cut’ MaxSR Comm. Vol.
P PLUM SBN PLUM SBN PLUM SBN PLUM SBN

2 1.00 1.01 3.29 7.65 157,542 158,085 7.625 3.921
4 1.00 1.00 4.01 12.81 143,227 114,652  14.264 7.250
8 1.01 1.01 5.77  18.33 129,859 65,824  26.092 18.356
16 1.02 1.01 7.81  29.25 103,090 35,389  36.787  27.658
32 1.04 1.02 10.94  36.47 63,270 19,446  41.113 35.268

volume (in MBytes), which is proportional to the TotalV metric. (Observe
that the total communication volume increases with the number of proces-
sors, while the MaxSR metric decreases.) On the other hand, the ParMETIS
partitioner used in PLUM generates dramatically smaller edge cuts (Cut%),
thereby minimizing the runtime interprocessor communication. Thus there is
a trade-off here: SBN reduces the data redistribution overhead at the expense
of greater runtime communication. This is due to the lazy approach of data
migration used by the SBN-based load balancer, but may be an acceptable
compromise for applications where the data migration cost is dominant.

Table 2 shows the fraction of time spent in the load balancer compared to
the total time required to process the mesh adaptation application, for both
PLUM and SBN. Notice that the partitioning overhead of PLUM is dramat-
ically less than the balancing cost of SBN. This is due to the state-of-the-art
ParMETIS partitioner, which uses the dual graph information to efficiently
compute a new mesh distribution. The SBN balancer, on the other hand, is
dominated by the cost of vertex selection. This algorithm dynamically chooses

Table 2
Percentage overhead of the two load balancers

PLUM SBN

Partitioning Remapping Balancing Distributing
P SP2 02000 SP2 02000 SP2 02000 SP2 02000

2 0.13 0.14 1.45 1.11 0.86 0.75 0.04 0.03
4 0.15 0.15 2.56 2.01 1.15 0.99 0.11 0.08
8 0.17 0.18 3.52 2.83 2.11 1.48 0.20 0.11
16 0.32 0.34 4.04 3.31 2.75 1.89 0.28 0.16
32 0.46 0.50 4.40 3.67 3.01 2.52 0.38 0.20
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the next dual graph vertex to be processed, depending on specific runtime cri-
teria. Thus, vertex selection is not as efficient as parallel partitioning, since
the balancing data are not available a priori as in the PLUM framework. How-
ever, the cost of remapping within PLUM is significantly more expensive than
SBN distribution. During PLUM remapping, useful processing is suspended
while the mesh is redistributed and data objects are appropriately rebuilt.
The SBN approach allows processing to continue while the load is dynami-
cally balanced. This allows the communication overhead of distribution to be
overlapped with the processing of the mesh application, substantially reducing
the data movement cost compared to traditional remapping schemes. Finally,
observe that the Origin2000 is responsible for a smaller overall percentage of
remapping/distribution compared to the SP2, for both balancing strategies.
This is due the superior network performance of the Origin2000.

6 Conclusions

In this paper, we have described two novel approaches (PLUM and SBN-
based) to solving the dynamic load balancing problem for parallel adaptive
unstructured grids. We have demonstrated their effectiveness and performance
on a computational grid that was used to simulate an unsteady environment
where the adapted region is strongly time-dependent. Results indicated that
both strategies achieve excellent load balance at the cost of minimal extra
overhead (less than 5% for our application). Compared to PLUM, the SBN
approach reduces the data remapping cost at the expense of higher interpro-
cessor communication. In dynamic applications where the data redistribution
cost dominates the processing and communication costs, this may be an ac-
ceptable trade-off. We are currently examining the portability of our software
to shared-memory environments and workstation clusters. We also believe that
the performance of our load balancers can be improved by exploiting one-sided
communication. This will be the subject of future research.
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