Adaptive Load-Balancing Algorithms using Symmetric Broadcast
Networks: Performance Study on an IBM SP2

Sajal K. Das and Daniel J. Harvey

Department of Computer Sciences
University of North Texas
P.O. Box 13886
Denton, TX 76203-6886
E-mail:{das,harvey} @Qcs.unt.edu

Abstract

In a distributed-computing environment, it is im-
portant to ensure that the processor workloads are ad-
equately balanced. Among numerous load-balancing al-
gorithms, a unique approach due to Das and Prasad
defines a symmetric broadcast network (SBN) that
provides a robust communication pattern among the
processors in a topology-independent manner. In
this paper, we propose and analyze three SBN-based
load-balancing algorithms, and implement them on an
SP2. A thorough experimental study with Poisson-
distributed synthetic loads demonstrates that these al-
gorithms are very effective in balancing system load
while minimizing processor idle time. They also com-
pare favorably with several existing techniques.

1 Introduction

To maximize the performance of a multicomputer
system, it is essential to evenly distribute the load
among the processors. In other words, it is desirable
to prevent, if possible, the condition where one node is
overloaded with a backlog of jobs while another pro-
cessor is lightly loaded or idle. The load-balancing
problem is closely related to scheduling and resource
allocation, and can be static or dynamic. A static
allocation [12] relates to decisions made at compile
time, and compile-time programming tools are nec-
essary to adequately estimate the required resources.
On the other hand, dynamic algorithms [1, 5] allo-
cate/reallocate resources at run time based on a set
of system parameters that are maintained. Determin-
ing these parameters and how to broadcast them are
important considerations.

In this paper, we consider general-purpose dis-
tributed memory parallel computers where processors
(or nodes) are connected by a point-to-point network
topology and the nodes communicate with one another

Rupak Biswas

MRJ Technology Solutions
NASA Ames Research Center
Mail Stop T27A-1
Moffett Field, CA 94035-1000

E-mail: rbiswas@nas.nasa.gov

using message passing. Responsibility for load balanc-
ing is decentralized, and processor workload is deter-
mined by the length of the local job queue of a node.
The network is assumed to be homogeneous and any
job can be processed by any node. However, jobs can-
not be rerouted once execution begins.

Das et al. [3, 4] have suggested a different approach
to load balancing, by introducing a logical topology-
independent communication pattern called a symmet-
ric broadcast network (SBN). We refine this approach
and propose three novel and efficient load-balancing
algorithms, one of which is adapted for use on a hy-
percube architecture. Based on [13], our SBN-based
algorithms can be classified as:

Adaptive: performance adapts to the system load;
Symmetric: senders and receivers initiate balancing;
Stable: excessive balancing traffic is avoided;
Effective: balancing does not degrade performance.

The three algorithms proposed in this paper have
been implemented on an IBM SP2 using the Message-
Passing Interface (MPI). Performance of the SBN al-
gorithms are analyzed by an extensive set of experi-
ments with Poisson-distributed synthetic loads. The
results are compared with other existing techniques
such as Random [5], Gradient [9], Sender Initiated [6],
Receiver Initiated [6], and Adaptive Contracting [6].
Our experiments demonstrate that a superior quality
of load balancing is achieved by the SBN approach
with respect to such metrics as the total jobs trans-
ferred, total completion time, message traffic per node,
and maximum variance in node idle time. Additional
experiments where the SBN-based load balancing is
applied to dynamic mesh adaptation problems using
actual load data further confirm these conclusions [2].

This paper is organized as follows. Section 2 re-
views a few existing approaches for load balancing

that will be used for comparison purposes. Section 3
defines symmetric broadcast networks. Section 4 dis-
cusses general characteristics common to all of the pro-
posed algorithms. Section 5 presents three SBN-based
load-balancing schemes while Section 6 summarizes
the experimental results, comparing SBN algorithms
to other load-balancing techniques. The final section
concludes the paper.

2 Previous Work

Among various approaches for comparing load-
balancing algorithms, three categories of analysis pre-
dominate: (a) mathematical modeling, (b) solving
well-known problems in a multiprocessor environment,
and (c) simulation. For example, in [11], the probabil-
ity of load-balancing success is computed analytically.
In [7], several load-balancing methods are compared
by implementing Fibonacci number generation, the
N-Queens problem, and the 15-puzzle on a network;
whereas the simulation approach has been employed
in [8].

In this paper we perform experiments on an IBM
SP2 multiprocessor, using the simulation approach
with synthetically-generated random loads according
to Poisson distributions. A mathematical analysis of
the alorithms and results of additional experiments
that utilize actual load data from a dynamic mesh ap-
plication are reported in [2].

In general, load-balancing algorithms are very sus-
ceptible to the choice of system thresholds [10]. We
have also noticed that proper selection of threshold
values optimizes the proposed SBN-based algorithms.
The following load-balancing algorithms will be com-
pared with ours.

Random [5]: Jobs are randomly distributed among
processors (or nodes) as they are generated. Once
a job originating at a node is received by another
node, it is processed.

Gradient [9]: Jobs migrate from overloaded to
lightly-loaded nodes. This is accomplished by a
maintaining a gradient at all nodes of the network.
The gradient specifies the distance of the nearest
lightly-loaded node through each neighbor. This
requires frequent broadcasts between neighboring
nodes.

Receiver initiated [6]: Load balancing is triggered
by a lightly-loaded node. If the load value of a node
falls below the system threshold, it broadcasts a job
request message to its neighbors. The node’s job
queue length is “piggy backed” to the request mes-
sage. To prevent instability in light system load con-
ditions, a node waits one second before initiating
additional requests.

Sender initiated [6]: Messages are directed to
lightly-loaded neighbors from overloaded nodes. To
prevent instability under heavy system loads, nodes
exchange load information with their neighbors
when local job queue sizes are halved or doubled.

Adaptive contracting [6]: When jobs are generated,
the originating node distributes bids to its neighbor
nodes in parallel. The neighbors in turn respond
with a message containing the number of jobs in
their respective local queues. The originating node
then appropriately distributes jobs to its neighbors.

3 Preliminaries on SBN
A symmetric broadcast network (SBN) defines a

communication pattern (logical or physical) among

the P processors in a multicomputer system [3, 4].

An SBN of dimension d > 0, denoted as SBN(d), is a

d + 1-stage interconnection network with P = 2¢ pro-

cessors in each stage. It is constructed recursively as

follows:
e A single node forms the basis network SBN(0).
e For d > 0, an SBN(d) is obtained from a pair of
SBN(d — 1)s by adding a communication stage in
the front and additional interprocessor connections
as follows:
(a) Node i in stage 0 is connected to node
j = (i + P/2) mod P in stage 1; and

(b) Node j in stage 1 is connected to the node in
stage 2, that was the stage 0 successor of node
iin SBN(d —1).

An example of how an SBN(2) is formed from two
SBN(1)s is shown in Fig. 1. The SBN approach de-
fines unique communication patterns among the nodes
in the network. For any source node at stage 0, there
are log P stages of communication with each node ap-
pearing exactly once. The successors and predecessors
of a node are uniquely defined by the message origi-
nating node and the communication stage.

Stage 0 Stage 1 Stage 0 Stage 1 Stage 2

Figure 1: Construction of SBN(2) from two SBN(1)s

As an example, consider the two communication
patterns for SBN(3) shown in Fig. 2. The paths in
Fig. 2(a) are used to route messages originating from
node 0, while those in Fig. 2(b) are for messages origi-
nating from node 5. Now if n§ denotes a node at stage

(&) ©
(a (b

Figure 2: SBN communication patterns in SBN(

®

©

®
3)

s in Fig. 2(b) and n§ is the corresponding node in
Fig. 2(a), then n{ = n§ ® 5, where @ is the exclusive-
OR operator. In general, if n is the corresponding
node in the communication pattern for messages orig-
inating from source node z, then n = n§ @ z. Thus,
all SBN communication patterns can be derived from
the template with node 0 as the root. The predecessor
and two successors to ng can be computed as follows:

Predecessor = (n§ — 247%) v 2¢=5+1

where V is the inclusive-OR operator.
Successor_1 = n§ + 247271 for 0 < s < d,
Successor 2 = n§ — 297571 for 1 < s < d.

Figure 2 illustrates two possible SBN communica-
tion patterns, but many others can easily be derived
based on network topology and application require-
ments.

For example, a modified binomial spanning tree,
which is two binomial trees connected back to back,
can be obtained. Figure 3 shows such a communica-
tion pattern for a 16-node SBN network which routes
messages from node 0. The solid lines represent the
actual SBN pattern, whereas the dashed lines are used
to gather load-balancing messages at the destination
node 15.

The modified binomial spanning tree is particularly
suitable for adapting an SBN-based algorithm to the
hypercube architecture. It ensures that all successor
and predecessor nodes at any communication stage are
adjacent nodes in the hypercube. Also, every origi-
nating node has a unique destination. If the nodes are
numbered using a binary string of d bits, the number
of predecessors for a node is max {1, b} where b is the
number of consecutive leftmost 1-bits in the node’s
binary address.

Figure 3: Binomial spanning tree in SBN(4)

4 Load Balancing Characteristics
4.1 System Thresholds

All SBN-based load-balancing algorithms adapt
their behavior to the system load. Under heavy (light)
loads, the balancing activity is primarily initiated by
processors that are lightly (heavily) loaded. This ac-
tivity is controlled by two system thresholds, MinTh
and MaxTh, which are respectively the minimum and
maximum system load levels. The system load level,
SysLL, is the average number of jobs queued per pro-
cessor. If a processor has a queue length, QLen, below
MinTh, a message is initiated to balance load. If QLen
> MaxTh, extra jobs are distributed through the net-
work. If this distribution overloads other processors,
load balancing is triggered.

Algorithm behavior is affected by the values chosen
for MinTh and MaxTh. For instance, MinTh must be
large enough to receive sufficient jobs can be received
before a lightly-loaded processor becomes idle. How-
ever, the value should not be so large as to initiate
unnecessary load balancing. If MaxTh is too small, it
will cause an excessive number of job distributions. If
it is too large, jobs will not be adequately distributed
under light system loads. Moreover, once there is suf-
ficient load on the network, very little load-balancing
activity should be required.

4.2 Message Communication

Two types of messages are processed by the SBN
approach. The first type is the balancing message
which is sent through the network to indicate unbal-
anced system load. These messages are originated
from an unbalanced node and then routed through
the SBN. As these balancing messages pass through
the network, the cumulative total of queued jobs is
computed to obtain SysLL. The second message type
for job distribution is used for three purposes. First,
they are used to route the SysLL through the net-
work. Each node, upon receipt of such a message,
updates its local values for MinTh, MaxTh, and SysLL.
Second, job distribution messages are used to pass ex-
cess jobs from one node to another. This action can
occur whenever a node has more jobs than its MaxTh.
Third, jobs can be distributed when a node responds
to another node’s need for jobs. This need is em-
bedded in both load-balance messages and distribu-
tion messages. To reduce message traffic, a node does
not initiate additional load-balancing activity until all
previous balancing-related messages that have passed
through the node have been completely processed.

4.3 Common Procedures

All of our SBN-based load-balancing algorithms
consist of four key procedures. The first two, Get-

Distribute and GetBalance, are used to respectively
process distribution and balance messages that are re-
ceived. Similarly, the procedures, Distribute and Bal-
ance, respectively route distribution and balance mes-
sages to the SBN successor nodes. Details of these
procedures depend on the particular load-balancing
algorithm used. Figure 4 presents the pseudo code
that is common to all of the SBN based load-balancing
algorithms.

Procedure Main Line Processing
Repeat forever
Call GetBalance to receive load-balance messages
Call GetDistribute to receive distribution messages
If (QLen > MaxTh)
Call Distribute to send excess jobs through SBN
If (QLen < MinTh)
Call Balance to initiate load-balancing operation
Call UpdateLoad(TotalJobsQueued) to set SysLL
Normal Processing
End Repeat

Procedure UpdateLoad(LoadLevelEstimate)
SysLL = [LoadLevelEstimate/P]
MaxTh = SySLL + 2|_SysLL/ConstantValueJ
If (SysLL > ConstantValue)
MinTh = ConstantValue
else
MinTh = SysLL —1
Return

Figure 4: Pseudo code for all SBN algorithms

5 Proposed algorithms
5.1 Standard SBN Algorithm

In the standard SBN algorithm, load-balancing
messages are routed through the SBN from the source
to the processors at the last stage. Load-balance mes-
sages are then routed back towards the original source
so the total number of jobs in the system can be com-
puted. The originating node thus has an accurate
value of SysLL. Distribution messages are then sent
to all nodes along with SysLL. All nodes update their
local SysLL, MinTh, and MaxTh. Excess jobs are routed
as part of this distribution to balance the system load.
In addition, if a processor has QLen < SysLL, the need
for jobs is indicated during the distribution process.
Successor nodes respond by routing back an appropri-
ate number of excess jobs. Figure 5 provides pseudo
code of the standard SBN algorithm.

For illustration, consider SBN(3) in Fig. 6(a) which
depicts the id and QLen for each node. For example,
node 6 has three jobs queued for processing, indicated
as 3. The initial values of the SysLL, MinTh, and

Procedure GetBalance
While there are balance messages to receive
Route needed jobs to predecessor node if possible
If balancing messages are to be gathered, Break
If this is the final SBN stage
Route distribution and SysLL to originator node
If this is the originator of the load balancing
Decrement number of active balance operations
Call UpdateLoad(TotalJobsQueued)
Distribute excess jobs and SysLL through SBN
else
Increment load-balancing operations in process
Route the balance message to the next SBN stage
End While

Return

Procedure GetDistribute
While there are distribution messages to receive
Enqueue any jobs received
If predecessor node needs jobs, route excess jobs
If load balancing is complete
Decrement number of active balancing operations
Call UpdateLoad(TotalJobsQueued)
If this message completes a distribution
If (QLen > MaxTh)
Trigger load balancing
else
Call Distribute to route excess jobs through SBN
end While
Return

Procedure Balance
If this is the final stage, Return
If this is a new balance operation
If load balancing is in process, Return
Increment number of active balance operations
Compute number of distribution messages expected
Compute number of jobs needed
Route the balance message to the next SBN stage
Return

Procedure Distribute

If this is the final SBN stage, Return

If a normal distribution and load balancing is active
Inhibit the distribution and Return

Compute number of excess jobs and jobs needed

Dequeue the jobs to be distributed

Distribute jobs and forward SysLL data to successors

Return

Figure 5: Standard SBN algorithm pseudo code

Figure 6: Standard SBN algorithm load-balancing

MaxTh at node 0 are 4, 2, and 6, respectively (indi-
cated as L4, m2, and M6). After a load-balancing
request is sent through the SBN and then routed back
to node 0, these values are updated as 8, 2, and 24,
respectively, using:

SysLL = [TotalJobsQueued /P

MinTh = min{ConstantParameter, SysLL —1}

MaxTh = SysLL +2LSysLL/ConstantParameterJ
Note that when the balancing is initiated, node 4 dis-
tributes half of its QLen jobs, i.e. |3/2], back to node 0
which had a need for jobs. This distribution is shown
by a label on the arrow in Fig. 6(a).

Distribution messages are then used to route ex-
cess jobs to the successor nodes or to indicate a need
for jobs if the local QLen is less than SysLL. Jobs
are routed back to the predecessors when appropriate.
Figure 6(b) shows the result of this distribution. The
arrows indicate the number of jobs routed between
nodes.

To balance loads of P processors, P — 1 balance
messages are sent through the SBN. Then P — 1 dis-
tribution messages are routed back to the originating
node with the SysLL value. Finally, another P —1 dis-
tribution messages are sent to complete the operation.
Thus, a total of 3P — 3 messages have to be processed,
requiring a total time of O(log P) for this operation.
5.2 Hypercube Variant

The SBN approach can be adapted for implemen-
tation on a hypercube topology, using the modified
binomial spanning tree sketched in Fig. 3. It operates
in a manner similar to the standard SBN algorithm
with the following differences:

e The value of SysLL is computed when all balance
messages arrive at the destination. This is possi-
ble because there is a unique destination node for
every originating node. Distribution messages are
then routed back to complete the load balancing.
Since there are P — 1 + g — 1 interconnections
in the modified binomial spanning tree, a load-
balancing operation requires 3P — 4 messages to
be processed in O(log P) time.

e Nodes in the SBN need to gather all balancing
messages from their predecessors before routing
the updated SysLL to the successors.

e The network topology is such that the number

of predecessor and successor nodes vary at the
different stages of communication.

5.3 Heuristic SBN Algorithm

Both of the previous algorithms are expensive since
a large number of messages has to be processed to
accurately maintain the SysLL. The heuristic version
attempts to reduce the amount of processing by ter-
minating load-balancing operations as soon as enough
jobs are found that can be distributed. In general,
this strategy reduces the number of messages although
O(P) messages are needed in the worst case.

In the heuristic algorithm, a processor estimates
SysLL by averaging QLen for the processors through
which the balance message has passed. An appropri-
ate number of jobs is then returned to the predecessor
nodes as follows:

ExJobs = 0 if Qlen < 3
| |QLen/2] otherwise.

If ExJobs = 0 or if SysLL > 2 when ExJobs = 1,
the balance message is forwarded to the next stage.
Otherwise, the load balancing is terminated. The jus-
tification for this strategy is discussed in [2].

Job distribution is also processed differently in the
heuristic SBN algorithm. For example, consider the
network SBN(3) that has a processor with MaxTh= 15
and QLen = 24. The number of jobs to be distributed
is computed by dividing QLen by the total number
of stages. Thus, six jobs are distributed in this case.
SysLL is then set to 24 — 6 = 18. The processor that
receives these jobs divides the number of jobs received
by the remaining number of stages and adds the result
to the SysLL stored at that node. The pseudo code
in Fig. 7 gives the operational details of the heuristic
SBN algorithm.

5.4 Remarks

A significant advantage of the heuristic variant is
that the load-balancing messages do not have to be
gathered until SysLL can be estimated. This reduces
the interdependencies associated with the communi-
cation. If a processor fails, load balancing can still be
accomplished utilizing the remaining processors.

An additional improvement has been obtained for
all three load-balancing algorithms by using multiple
SBN communication patterns. Each time a message
is initiated, one of the SBN patterns is randomly cho-
sen. Each message includes the source node, the pat-
tern used, and the stage to which the message is be-
ing routed. Since all nodes have the SBN template
associated with messages originating from node 0, the
required SBN communication pattern can be deter-
mined. Multiple randomly-selected SBN patterns dis-

tribute messages more evenly, enhance network reli-
ability, and allow various applications to be written
using different communication patterns.

Procedure GetBalance
While there are balance messages to be processed
Calculate the estimated TotalJobsQueued
Call UpdateLoad(TotalJobsQueued)
Distribute excess jobs to predecessor node
If jobs distributed = 0 (or one job when SysLL > 2)
Route the balance message to the next SBN stage
End While
Return

Procedure GetDistribute
While there are distribution messages to be processed
If this distribution is in response to load balancing
NewLL = SysLL +[JobsReceived/(Stage +1)]
else
NewLL = QLen + [JobsReceived/(24-5%28° — 1)]
Call UpdateLoad(P x NewLL)
Enqueue received messages
Continue the distribution to the next SBN stage
End While
Return

Procedure Balance

If this is the final stage, return

Route the Balance message to the next SBN stage
Return

Procedure Distribute
If this is the final SBN stage, return
If this is a response to a load-balancing operation
If (QLen < 3)
ExJobs =0
else ExJobs = |Qlen/2|
else ExJobs = QLen — MaxTh
If the last job is to be distributed, ExJobs = 0
Dequeue the jobs to be distributed
Distribute the ExJobs among adjacent SBN nodes
Return(Number0f JobsDistributed)

Figure 7: Heuristic SBN algorithm pseudo code

6 Experimental Results

The three SBN-based load-balancing algorithms
have been implemented using MPI and tested with
synthetically-generated workloads on the SP2 located
at NASA Ames Research Center. The simulation pro-
gram spawns the appropriate number of child pro-
cesses and creates the desired network. The list of all
process ids and an initial distribution of jobs is routed
through the network.

In addition to the initial load, each node dynam-
ically generates additional job loads to be processed.
Namely, 10 job creation cycles are processed. The
number of jobs generated at each node during each cy-
cle follows a Poisson distribution. By randomly pick-
ing different values of A, varying numbers of jobs are
created. Therefore, both heavy and light system load
conditions are dynamically simulated. Jobs are pro-
cessed by “spinning” for the designated time period.
The simulation terminates when all jobs have been
processed. Two test runs are reported here.

Heavy system load (cf. Fig. 8): Initially, 10 jobs
per node are randomly distributed throughout
the network. The jobs generated during execu-
tion are more than the network can process. Job
duration averages one second.

Light system load (cf. Fig. 9): A small number
of jobs are initially distributed to a small subset
of nodes. A light load of jobs are created as the
algorithms execute.

An additional experiment in which the system load
transitions from heavy to light is reported in [2].

The performance of the SBN-based algorithms are
compared with several popular algorithms (e.g. Ran-
dom, Gradient, Sender Initiated, Receiver Initiated,
Adaptive Contracting). The same simulation tests are
also run without load balancing.

The line charts included in Figs. 89 measure
the comparative performance of the various load-
balancing algorithms on an SP2. The X-axis of the
line charts show the number of processors used. The
Y-axis tracks the following variables:

(a) Message Traffic Comparison by Node:
Measures the maximum total number of load-
balancing messages sent by a node.

(b) Total Jobs Transferred:

Measures the total number of job transfers that
occurred from one node to another.

(¢) Maximum Variance by Node in Idle Time:
Measures processing difference between the most
busy node and the least busy node.

(d) Total Time to Complete:

Measures the total amount of elapsed time in sec-
onds before all jobs are fully processed.

As expected, the program with no load balancing
(nobal) performs by far the worst. The random algo-
rithm, although providing significant improvement in
minimizing idle time, nevertheless is less effective than
the remaining algorithms.

The Sender Initiated (send) algorithm more evenly
balances the load than random; however, the Receiver

Message Traffic Comparison by Node

140000 — - < - - - - e
. .
120000 — < < - - - Y ram——
100000 ! = gradient
80000 ' ——&—nobal
60000 — - - < < - oo e S X-—random
' — % — receive
40000 — - < - [
. = — o - send
20000 ,
_ - - -+ - -cube
0 — ——sbn
2 4 8 16 2 64 bz

Message Traffic Comparison by Node

——acwn
| gradient

———&——nobal
X~ random

— % — receive
— @ - send
- -+ - ~cube

— —=— sbn

b:

——acwn
® gradient
——&—nobal
X-—-random
— % — receive
— @— - send
=== - -cube
— —=— sbn
—sbz
—&—acwn
& gradient
~——&——nobal
X-—random
— % — receive
— @ - send
- - -cube
— —=— sbn
'sbz

——aown
m - gradient
——&——nobal
X
— ¥ — receive
— & - send
- - = - -cube
——— sbn

random

———acwn
= gradient
——&——nobal
X—-random
— ¥ — receive
. — & - send
' <-4 - -cube

— —=— sbn

b7

2 4 8 16 32 64

——acwn
—-m—gradient
~——&—-nobal
X~ random
— ¥ — receive
— - send
- - - -cube
———sbn
shz
Total Time to Complete
600 - - - - - - e - e - - - -
‘ ‘ ‘ . / —e—acmn
500 ' ' ' e ® - gradient
' ' ' ——&——nobal
. X random
— % — receive
— - send
- - = - -cube
— ——sbn
sbz

Figure 8: Heavy system load

Figure 9: Light system load

Initiated (receive) algorithm does better only when the
system load is light. For light to moderate loads, re-
ceive generates more network traffic because all nodes
poll neighbors to find jobs they can process. To over-
come this deficiency, a time delay of one second has
been introduced after a polling operation at the cost
of increasing the idle time. At heavy system loads,
send can cause job thrashing. This has been overcome
by reducing the number of job transfers that are done
at high load levels. However, it can cause one or more
nodes to remain lightly loaded.

The Gradient (gradient) algorithm balances the
load quite well without any of the above deficien-
cies. Unfortunately, lightly-loaded nodes can some-
times receive too many messages from the overloaded
nodes. Also, message communication required to up-
date neighbor node information is significant and of-
ten results in excessive network traffic. The Adaptive
Contracting (acwn) algorithm performs the best in pe-
riods of heavy system loads. However, as for the gra-
dient algorithm, an increased system traffic and the
number of jobs migrated is observed.

Both the standard SBN (sbn) algorithm and its hy-
percube variant (cube) were able to balance the system
load more evenly than other algorithms. Their perfor-
mance characteristics are very similar. They require
less message traffic than the gradient algorithm but
cause a higher number of job migrations, especially in
periods of light system loads.

The heuristic SBN algorithm (sbz) performs well in
minimizing idle time in light system loads. Although
its performance during periods of heavy loads is rela-
tively good, it does not balance the generated system
load as well as the cube or sbn. This is because its es-
timate of SysLL is not necessarily accurate. Note that
for light loads, sbz requires many more job transfers
than the other algorithms. However, it consistently
requires fewer messages than gradient, sbn, or cube.

7 Conclusions

Empirical results have shown that our approach
to load balancing using the concept of a symmetric
broadcast network (SBN) is effective and superior to
several other schemes. All three proposed algorithms
that we propose successfully balance the system load
and minimize processor idle time. In addition, the
heuristic variant reduces the overhead associated with
balancing message traffic.

The research presented in this paper could be ex-
tended in different directions. Further adaptations of
our SBN-based load balancing approach to a wide va-
riety of topological interconnections (and hence multi-
computer configurations) would make our scheme even

more versatile and architecture-independent. This
simply means how effectively SBNs can be mapped
onto existing topologies like meshes, fat trees, etc. An-
other important topic is to analyze the effect of alter-
ing the definition of “system load”. In the standard
SBN algorithm, we have assumed that the local queue
size determines system load. In the dynamic mesh
adaptation reported in [2], a weighted queue length
was used. However, other parameters such as pro-
cessor resource allocation and execution dependencies
could greatly alter how load balancing should be ac-
complished.

References
[1] G. Cybenko, “Dynamic Load Balancing for Distributed

Memory Multiprocessors,” Journal of Parallel and Dis-
tributed Computing, Vol. 7, No. 2, pp. 279-301, Oct. 1989.

[2] S.K. Das, D.J. Harvey, and R. Biswas, “Adaptive Load-
Balancing Algorithms Using Symmetric Broadcast Net-
works,” NASA Ames Research Center Technical Report,
NAS-97-014, May 1997.

[3] S.K. Das and S.K. Prasad, “Implementing Task Ready
Queues in a Multiprocessing Environment,” Proc. of the
International Conference on Parallel Computing, Pune,
India, pp. 132-140, Dec. 1990.

[4] S.K. Das, S.K. Prasad, C-Q. Yang, N.M.Leung, “Sym-
metric Broadcast Networks for Implementing Global Task
Queues and Load Balancing in a Multiprocessor Environ-
ment,” UNT Technical Report, CRPDC-92-1, 1992.

[5] D.L. Eager, E.D. Lazowska, and J. Zahorjan, “Adap-
tive Load Sharing in Homogeneous Distributed Systems,”
IEEE Transactions on Software Engineering, Vol. SE-12,
No. 5, pp. 662-675, May 1986.

[6] D.L. Eager, E.D. Lazowska, and J. Zahorjan, “A Compar-
ison of Receiver-Initiated and Sender-Initiated Adaptive
Load Sharing,” Performance Evaluation, Vol. 6, No. 1, pp.
53-68, Mar. 1986.

[7] M.D. Feng and C.K. Yuen, “Dynamic Load Balancing on a
Distributed System,” Proc. of the Symposium on Parallel
and Distributed Processing, Dallas, TX, pp. 318-325, Oct.
1994.

[8] L.V. Kale, “Comparing the Performance of Two Dynamic
Load Distribution Methods,” Proc. of the International
Conference on Parallel Processing, Vol 1, pp. 8-12, 1988.

[9] F.C.H. Lin and R.M. Keller, “The Gradient Model Load
Balancing Method,” IEEE Trans. on Software Engineer-
ing, SE-13, pp. 32-38, 1987.

[10] S. Pulidas, D. Towsley, and J. A. Stankovic, “Embedding
Gradient Estimators in Load Balancing Algorithms,” Proc.
of the International Conference on Distributed Computing
Systems, pp. 482-490, 1988.

[11] C.G. Rommel, “The Probability of Load Balancing Suc-
cess in a Homogeneous Network,” IFEE Transactions on
Software Engineering, pp. 922-923, Sept. 1992.

[12] V. Sarkar and J. Hennessy, “Compile-time Partitioning
and Scheduling of Parallel Programs,” Scheduling and
Load Balancing in Parallel and Distributed Systems, IEEE
Computer Society Press, Los Alamitos, CA, pp. 61-70,
1995.

[13] N.G. Shivaratri, P. Krueger, and M. Singhal, “Load Dis-
tributing for Locally Distributed Systems,” Computer, pp.
33-44, December 1992.

