Parallel Processing of Adaptive Meshes with Load Balancing

Sajal K. Das and Daniel J. Harvey

Department of Computer Sciences
University of North Texas
P.O. Box 311366
Denton, TX 76203-1366
E-mail:{das,harvey }@Qcs.unt.edu

Abstract

Many scientific applications involve grids that lack
a uniform underlying structure. These applications
are often also dynamic in nature in the sense that
the grid structure significantly changes between suc-
cessive phases of execution. In parallel computing
environments, mesh adaptation of unstructured grids
through selective refinement/coarsening has proven to
be an effective approach. However, achieving load bal-
ance while minimizing interprocessor communication
and redistribution costs is a difficult problem. Tradi-
tional dynamic load balancers are mostly inadequate
because they lack a global view of system loads across
processors. In this paper, we present a novel, general-
purpose load balancer that utilizes symmetric broad-
cast networks (SBN) as the underlying communica-
tion topology. The experimental results on the IBM
SP2 demonstrate that performance of the SBN-based
load balancer is comparable to results achieved under
PLUM, a global load balancing environment created to
handle adaptive unstructured applications.

1 Introduction

Mesh partitioning is a common approach to pro-
cessing many scientific applications in parallel. These
applications are generally modeled discretely using a
mesh (or grid) of vertices and edges. For maximum
(parallel) efficiency, the computational workloads on
the processors have to be balanced and the number of
edges that are cut (and hence the overall interproces-
sor communication cost at runtime) needs to be mini-
mized [11, 13]. For this purpose, each vertex is usually
assigned a weight that indicates the amount of com-
putation required to process it. Similarly, each edge
in the mesh has an associated weight indicating the
amount of interaction between adjacent vertices. To
achieve load balance dynamically, portions of the mesh
have to be migrated among the processors during the

Rupak Biswas

MRJ Technology Solutions
NASA Ames Research Center
Mail Stop T27A-1
Moffett Field, CA 94035-1000
E-mail: rbiswas@nas.nasa.gov

course of a computation. Thus, in a multiprocessing
environment, the vertex weight contains an additional
component that models the cost of redistributing the
vertex from one processor to another. These weights
are used to minimize the data redistribution cost dur-
ing the remapping phase.

In adaptive meshes, the grid topology changes dur-
ing the course of a computation. Traditionally, this
class of problems is processed by load balancing the
mesh after each adaptation. A number of partition-
ers designed for this purpose has been proposed in the
literature [9, 10, 11, 14, 18, 20, 23]. A majority of
the successful partitioners are based on a multilevel
approach that has proven to be extremely effective
in producing good partitions at reasonable execution
cost. In this approach, the grid graph is first con-
tracted to a small number of vertices and edges, and
the coarsened graph is then partitioned and succes-
sively refined using a Kernighan-Lin replacement al-
gorithm [15]. For an excellent survey on other parti-
tioning methods, refer to [1].

Although several dynamic load balancers have been
proposed for multiprocessor platforms [3, 4, 6, 12, 16,
21, 22], most of them are inadequate for adaptive mesh
applications because they lack a global view of sys-
tem loads across processors. Also, job migration in
these approaches does not take into account the struc-
ture of the adaptive grid. In this paper, we overcome
these deficiencies by modifying the load balancer pro-
posed earlier by us [6]. Our load balancer makes use
of a symmetric broadcast network (SBN) which is a
robust and topology-independent communication pat-
tern among processors [7]. The proposed SBN-based
load balancer can be classified as:

e Adaptive: Processing automatically adjusts to

the number of jobs that are queued.

e Decentralized: Responsibility for load balanc-

ing is shared by all the nodes of the system. Any

node can initiate load balancing activity.

e Stable: Excessive load-balancing traffic does not
burden the network, especially under extremely
light or heavy system loads.

e Effective: System performance does not degrade
because of load balancing activities.

In an earlier work [6], we have shown that our ap-
proach achieves superior load balance when compared
to other popular load balancing techniques such as
Random, Gradient, Receiver Initiated, Sender Initi-
ated, and Adaptive Contracting.

Recently, experiments that measure the effective-
ness of load balancing adaptive meshes have been
conducted using an automatic portable environment,
called PLUM [17], that was developed at NASA Ames
Research Center. PLUM uses a novel balancing strat-
egy consisting of two separate phases: repartitioning
and remapping. After each mesh adaptation step,
the computational grid is globally repartitioned if the
workload distribution is unacceptable. The new par-
titions are then reassigned among the processors in
a way that minimizes the cost of data movement.
Only if the remapping cost is compensated by the
computational gain that would be achieved with bal-
anced partitions, is the necessary data appropriately
redistributed. Otherwise, the new partitioning is dis-
carded. Notice that data is not physically migrated
unless the cost estimates indicate that doing so is ben-
eficial.

The SBN-based load balancer differs from PLUM
in several ways as discussed below:

e Processing is temporarily halted under PLUM
while the load is being balanced. During the sus-
pension, a new k-way partitioning is generated
and data is redistributed among the nodes of the
network. The SBN approach, on the other hand,
allows processing to continue while the load is dy-
namically balanced. This feature also allows for
the possibility of utilizing latency tolerance tech-
niques to hide the communication and redistribu-
tion costs during processing.

e Under PLUM, suspension of processing and sub-
sequent repartitioning does not guarantee an im-
provement in the quality of load balance. If it
is determined that the estimated remapping cost
exceeds the expected computational gain that is
to be achieved by a load balancing operation, pro-
cessing continues using the original mesh assign-
ment. This could result in unnecessary idle time.
In contrast, the SBN approach will always result
in improved load balance among processors.

e PLUM redistributes all necessary data to the ap-
propriate nodes immediately before processing
continues. SBN, however, distributes in a “lazy”
manner. Data is migrated to a processor only
when it is ready to process the data, thus reduc-
ing redistribution and communication overhead.

We have performed extensive experiments on an
IBM SP2 to compare the performance of our SBN load
balancer to the results obtained under PLUM in [2].
The results demonstrate that the proposed approach
achieves excellent load balance and also significantly
reduces the redistribution cost compared to those ob-
tained by using the PMeTiS or DMeTiS partitioners
under PLUM. However, the edge cut percentages are
higher than those for PMeTiS, indicating that the SBN
strategy reduces the redistribution cost at the expense
of a higher communication cost. For example, with a
network of 32 processors, the redistribution cost using
the SBN strategy is approximately half of the cost in-
curred under PLUM. However, total communication
is almost doubled.

This paper is organized as follows. Section 2 re-
views the definition of SBN and a basic load balanc-
ing algorithm. Section 3 describes the modifications
made to incorporate a global view needed for adaptive
mesh applications. Section 4 presents an overview of
PLUM and the partitioners operating under that en-
vironment that are used for comparisons. Section 5
presents experimental results and a comparative per-
formance analysis. Section 6 concludes the paper.

2 Symmetric Broadcast Networks

A symmetric broadcast network (SBN), proposed by
Prasad and first presented in [7], defines a communi-
cation pattern (logical or physical) among the P pro-
cessors in a multicomputer system. This communica-
tion pattern can be efficiently embedded into different
parallel architectures in a topology-independent man-
ner [5, 8]. Let us first give a brief overview of SBN
and outline how to use it for load balancing.

Definition 1 An SBN of dimension d > 0, denoted
as SBN(d), is a (d+ 1)-stage interconnection network
with P = 2% processors in each stage. It is constructed
recursively as follows. A single node forms the basis
network SBN(0). For d > 0, an SBN(d) is obtained
from a pair of SBN(d — 1)s by adding a communica-
tion stage in the front with the following additional
interprocessor connections:

e Node i in stage 0, is made adjacent to node j =
(i + P/2) mod P of stage 1; and

e Node j in stage 1 is made adjacent to the node in

stage 2 which was the stage 0 successor of node i
in SBN(d — 1).

Figure 1 depicts an SBN(2), recursively constructed
from two SBN(1)s.

Stage 0 Stage 1

Figure 1: Construction of SBN(2) from a pair of
SBN(1)s. The new connections are shown by solid
lines and the original connections by dashed lines

By definition, each node in every stage s, for
1 < s <d-1, of SBN(d) has exactly two succes-
sors; whereas a node in stage 0 has only one suc-
cessor and a node in stage d has no successor. The
SBN(d) defines unique communication patterns (or
broadcast trees) among the nodes in the network. Pre-
cisely, for any source node or root z at stage 0, where
0 < z < P, there exists a unique broadcast tree T,
of height d = log P such that each of the 2¢ nodes
appears exactly once.

Lemma 1 Letn] be a node at stage s in the broadcast
tree T, having the root node x (at stage 0), where 0 <
z < P. Then n’ = n§ ® z, where @ is the exclusive-
OR operator, thus leading to T, =Ty @ x.

Thus, all SBN communication patterns can be de-
rived from the template tree with node 0 as the root.
As an example, consider two communication patterns
To and T5 in SBN(3) as shown in Figs. 2(a) and 2(b)
respectively. By our convention, n§ denotes a node at
stage s in Fig. 2(a) while n is the corresponding node
in Fig. 2(b). Furthermore, nf = n§ & 5.

oG
IO e 0 @

Figure 2: Examples of SBN communication patterns
in SBN(3)

The predecessor and successors of each node can
be uniquely defined by specifying the root 2z and the

communication stage s so that messages from z can
be appropriately routed to the other nodes.

Lemma 2 The predecessor and successors of node ng
can be computed as:

Predecessor = (n§ — 297%) v 24-s+1,

Successor_1 =ng +2¢7571 for 0 < s <d.

Successor 2 = n§ — 2473571 for 1 <s<d.
2.1 SBN-Based Load Balancing

This section outlines the basic SBN-based load bal-
ancer, proposed by us in [6], which processes two types
of messages. The first type is a load balancing mes-
sage that is broadcast when a node n determines that
the number, QLen(n), of locally queued jobs falls be-
low the minimum threshold, MinTh. A load balanc-
ing message will also be broadcast if QLen(n) exceeds
the maximum threshold, MaxTh, or if distributing the
excess jobs will result in other processors exceeding
MaxTh. As the load balancing message passes from
one node to another, values for the global number of
jobs queued (GLen) and the average number of jobs
queued per node or the system load level (SysLL) are
computed.

The second type of messages is called job distribu-
tion messages which are used to distribute jobs when
QLen(n) > MaxTh. Distribution messages are also used
to complete the load balancing process. After the
SysLL value is calculated, a distribution message is
broadcast through the network when jobs are routed
to the lightly loaded processors and the threshold val-
ues (MinTh and MaxTh) are updated. As a result, the
workload at all nodes is balanced.

3 Modified SBN Load Balancer

In order to provide a global view of the system and
make it effective for adaptive mesh applications, we
have made a series of modifications to the basic SBN
load balancer [6], just outlined. These modifications
are described in the following subsections.

3.1 Weighted Queue Length

The local queue length, QLen(p), as used by the
basic SBN approach is assumed to be an estimate of
the amount of processing to be performed by p. How-
ever, this parameter is inadequate for situations where
the mesh is adapted because it does not accurately
reflect the total processing load at p. To achieve a
better balance, we must take into account the sys-
tem variables like computation, communication, and
redistribution costs, that affect the processing of a lo-
cal queue. Therefore, we define a new metric called

weighted queue length, QWgt(p), to estimate the total
time required to completely service the vertices in the
local queue of p.

Let Wgt” be the computational cost to process a
vertex v, Commf, be the communication cost to inter-
act with the vertices adjacent to v but whose data sets
are not local to p, and Remap; be the redistribution
cost to copy the data set for v to p from another pro-
cessor. These factors vary widely from one vertex to
another in a given mesh. QWgt(p) is defined as:

QLen(p)
Qwgt(p) = Z (Wgt" + Comm,, + Remap,).

v=1

Clearly, if the data set for v is already assigned to
p, no redistribution cost is incurred, i.e., Remap, = 0.
Similarly, if the data sets of all the vertices adjacent
to v are also already assigned to p, the communication
cost, Commy,, is 0.

The threshold values, MinTh and MaxTh, must now
be based on QWgt(p) instead of QLen(p) to accommo-
date the redefinition of processing load. In our experi-
ments, MinTh, was set to reflect a 0.1 second processing
load.

3.2 Weighted System Load

The weighted system load level is computed as:

P
1 .
WSysLL = [F Z QWgt(Z)-‘)

=1

where P is the total number of processors used.

Assuming that the load is perfectly balanced among
the processors, WSysLL estimates the time required to
process the mesh and reflects the processing, commu-
nication, and redistribution costs in the current mesh-
to-processor assignment. Hence, a global view of the
system is captured that is otherwise not reflected using
SysLL in the basic SBN load balancer.

3.3 Prioritized Vertex Selection

The basic SBN balancing approach does not con-
sider the mesh connectivity when selecting vertices to
be processed. Therefore, boundary vertices that could
otherwise be migrated for more efficient execution, are
as likely to be executed locally as internal vertices.
The modified SBN load balancer takes advantage of
the underlying mesh structure and defers execution of
boundary vertices as long as possible.

Thus, the next queued vertex is selected for exe-
cution so as to minimize the overall cut size of the
adapted mesh. A priority min-queue is maintained
for this purpose, where the priority of a vertex v in
processor p is given by (Comm; + Remap))/Wgt®.

Therefore, vertices with no communication and redis-
tribution costs are executed first. Those with low com-
munication or redistribution overhead relative to their
computational weight are processed next. Conceptu-
ally, internal vertices are processed before those on
partition boundaries.

3.4 Differential Edge Cut

For balancing the system load among processors, an
optimal policy for vertex migration needs to be estab-
lished. When vertices are being moved, assume that
processor p is about to reassign some of its vertices to
another processor q. The modified SBN load balancer
running on p randomly picks a subset of vertices from
those queued locally. For each selected vertex v, the
differential edge cut!, ACut, is calculated as follows:

ACut = Remap, — Remap, +2 x (Commg — Commy,).

If ACut > 0, it is normalized as ACut/Wgt®.

When a vertex is reassigned from one processor to
another, the change in the communication cost must
be applied to both processors. Hence, the change in
the communication cost is doubled in the ACut for-
mula. The parameters Remap, and Remap; will ei-
ther be 0 or equal to the redistribution cost of moving
the data for v from p to ¢q. For example, assume p = 3,
q = 6, the data for v reside on p = 1, and its redistribu-
tion cost is 8. In this case, Remap, = Remap; = 8.
Similarly, if the data for v resides on p = 3, then
Remap, = 0 but Remap; = 8.

A positive ACut indicates that an increase in com-
munication and redistribution costs will result if v is
migrated from p to q. Therefore, the formula favors
migrating vertices with the smallest increase in com-
munication cost per unit computational weight. In
contrast, negative ACut values indicate a reduction in
communication and redistribution costs, hence favor-
ing the migration of vertices with the largest absolute
reduction in communication and redistribution costs.

Once ACut is calculated for all the randomly cho-
sen vertices, the vertex MinV with the smallest value
of ACut is chosen for migration. Next, following a
breadth-first search, the SBN balancer selects the ver-
tices adjacent to MinV that are also queued locally for
processing at p. The breadth-first search stops either
when no adjacent vertices are queued for local pro-
cessing at p, or if a sufficient number of vertices have
been found for migration. If more vertices still need to
be migrated, another subset of vertices are randomly
chosen and the procedure is repeated. This migration

!Here we are deviating from the usual definition of edge cut
to account for the dynamic nature of the SBN load balancer.

policy strives to maintain or improve the cut size dur-
ing the execution of the load balancing algorithm. In
contrast, the original SBN algorithms do not consider
cut size and hence are likely to experience larger cut
sizes as execution proceeds.

3.5 Data Redistribution Policy

The redistribution of data is performed in a “lazy”
manner. Namely, the data set for a given vertex v in a
processor p is not moved to g until the latter processor
is about to execute v. Furthermore, the data sets of
all vertices adjacent to v that are assigned to g are
migrated as well. This policy greatly reduces both the
redistribution and communication costs by avoiding
multiple migrations of data sets and having resident
all adjacent vertices that are assigned to processor ¢
while v is being processed.

We implement data migration by broadcasting a
job migration message when a vertex is about to be
processed and its corresponding data set is not resi-
dent on the local processor. A locate-message is then
broadcast to indicate the new location of the data set.

This policy is expected to maximize the number
of adjacent vertices that are local when a grid point
is processed. Hence, by considering the underlying
mesh structure, the communication overhead is re-
duced compared to that for the basic SBN algorithm.

4 The PLUM Environment

We experimentally compare the performance of our
SBN-based load balancer to PLUM [17] — a portable
and parallel load balancing framework for adaptive un-
structured grids. For the sake of completeness, the
features of PLUM are summarized below.

Figure 3 provides an overview of PLUM. After an
initial partitioning, a Solver executes several itera-
tions of the application. When the grid-to-processor
mapping becomes unbalanced due to mesh adapta-
tion, PLUM gains control to determine if the workload
among the processors has become unbalanced and to
take appropriate action if so required. Mesh repar-
titioning and processor reassignment are then per-
formed. If the estimated remapping cost exceeds the
expected computational gain to be achieved, execution
continues without remapping. Otherwise, the grid is
remapped among the processors before the computa-
tion is resumed.

As the computational mesh is adapted and the pro-
cessor workloads need to be rebalanced, PLUM can
use any general purpose partitioner. In [2], two state-
of-the-art partitioners, PMeTiS [14] and DMeTiS [20],
were used. Both partitioners are parallelized and
highly optimized for maximum efficiency, and have

INITIALIZATION MESH ADAPTOR LOAD BALANCER
Mapping
SOLVER
Refinement

Figure 3: Overview of PLUM, a framework for glob-
ally load balancing parallel adaptive computations

proven effective for adaptive grids. DMeTiS is a dif-
fusive scheme designed to modify existing partitions,
while PMeT1iS is a global partitioner that makes no as-
sumptions on how the mesh is initially distributed.

Both DMeTiS and PMeTiS are k-way multi-level al-
gorithms that operate in three phases: (i) in the initial
coarsening phase, the original mesh, My, is reduced by
collapsing adjacent vertices or edges through a series
of smaller and smaller meshes to My, such that M, has
a sufficiently small number of vertices; (ii) in the par-
titioning phase, the mesh workload is balanced among
the processors and the edge cut size is minimized; and
(iii) in the projection phase, the partitioned mesh Mj,
is gradually restored to its original size M.

5 Experimental Study

The SBN-based load balancing algorithm has been
implemented using MPI on the wide-node IBM SP2
located at NASA Ames Research Center, and tested
with actual workloads obtained from adaptive calcu-
lations. The computational mesh used for the exper-
iments simulates an unsteady environment where the
adapted region is strongly time-dependent. This goal
is achieved by propagating a simulated shock wave
through the initial mesh shown in Fig. 4. The test case
is generated by refining all elements within a cylindri-
cal volume moving left to right across the domain with
constant velocity, while coarsening previously-refined
elements in its wake. Performance is measured at nine
successive adaptation levels. The weighted sum of ver-
tices increased from 50,000 to 1,833,730 over the nine
levels of adaptation. This test case was chosen so that
the results could be compared to those compiled in [2]
using the PLUM environment.

5.1 Performance Metrics

The following metrics are chosen to evaluate the ef-
fectiveness of the SBN load balancer when processing
an unsteady adaptive mesh. Recall that v denotes a
vertex to be processed and P is the number of proces-
sors.

Figure 4: Initial and adapted meshes (after levels 1
and 5) for the simulated unsteady experiment

¢ Maximum redistribution cost: The goal is
to capture the total cost of packing and unpack-
ing data, separated by a barrier synchronization.
Since a processor can either be sending or receiv-
ing data, the overhead of these two phases is mod-
eled as a sum of two costs in this metric:

Z Remap, } +

v sent from p

I;leal)j({ Z Remap;;}.

v recv by p

MaxSR = max{
peP

Since MaxSR pertains to the processor that in-
curs the maximum redistribution cost, a reduc-
tion in the total data redistribution overhead can
be guaranteed by minimizing MaxSR.

e Load imbalance factor: It is formulated as:

LoadImb = max Qwgt(p) / WSysLL.
peE

This factor should be as close to unity as possible.

e Cut percentage: The runtime interaction be-
tween adjacent vertices residing on different pro-
cessors is represented by this metric as:

Cut} = IOOZ Z Commf,/ ZEdgee,

pEP v assigned to p e in mesh

where Edge® is the weight of edge e in the adap-
tive mesh. The Cut, value should be as small as
possible.

Pre-Exec Cut% in Tables 1, 2, and 3 initially pro-
jects the mesh edge cut before processing an adap-
tation level but after the previous adaptation level
has been processed.

Post-Exec Cut}, is the actual cut realized after
processing a given adaptation level.

Table 1 presents the results of processing the adap-
tive mesh with the SBN load balancer. Tables 2
and 3 respectively chart the results obtained using the
PMeTiS and DMeTiS partitioners within the PLUM en-
vironment. Note that Tables 2 and 3 do not show re-
sults corresponding to all values of P = 2, 4, 8, 16,
and 32. We have included only those data sets that
were available to us.

5.2 Summary of Results

The SBN-based approach achieves excellent load
balance. For example, LoadImb = 1.02 for P = 32 (see
Table 1). When P < 8, an ideal load imbalance factor
of 1.00 is achieved for most of the adaptation levels. In
contrast, this factor using PMeTiS and DMeTiS under
the PLUM environment is 1.04 and 1.59 respectively
(cf. Tables 2 and 3).

The MaxSR metric indicates the amount of redis-
tribution cost incurred while processing the adap-
tive mesh. The SBN “lazy” approach to migration
of vertex data sets produces significantly lower val-
ues than those achieved by PMeTiS or DMeTiS un-
der PLUM. For example, for P = 32, Table 1 shows
MaxSR = 28,031, which is significantly less than the
corresponding value in Table 2 (Maxsr = 63,270) and
in Table 3 (MaxSR = 62, 542).

Table 1 shows an SBN cut percentage that is almost
triple compared to those reported by PMeTiS (30.58%
compared to 10.94% for P = 32). This difference in
the cut percentage is significantly lower when com-
pared to the results obtained with DMeTiS (30.58%
compared to 20.30%).

In conclusion, these experimental results demon-
strate that the proposed SBN-based dynamic load bal-
ancer is effective in processing adaptive mesh applica-
tions, thus providing a global view across processors.
In many mesh applications in which the cost of data
redistribution dominates the cost of communication
and processing, the SBN balancer would be preferred.

6 Future Work

Currently, we are experimenting on the SGI Ori-
gin 2000 (a distributed shared-memory architecture)
to test the consistency of our results and implement
additional performance refinements to reduce commu-
nication cost. It would also be interesting to apply the
SBN balancer to adaptive mesh applications using a
heterogeneous network of workstations in which P is
not necessarily a power of 2. Since low-cost processing
power is readily available, it would be desirable to ex-
plore the effect of adding latency-tolerant techniques
to the load balancing method. This research also in-
cludes techniques to adapt the processing to situations
where some of processors in a network environment

Table 1: Mesh adaptation results using SBN balancer

Adaptation Pre-Exec Post-Exec
Level Cut % Cut % MaxSR Loadimb
P=2
1 0.09% 4.64% 6,974 1.00
2 3.14% 6.18% 30,538 1.00
3 5.36% 6.08% 57,724 1.00
4 3.93% 3.86% 20,646 1.00
5 2.91% 5.32% 76,893 1.00
6 2.33% 4.62% 103,544 1.00
7 2.23% 5.86% 140,904 1.00
8 2.83% 6.14% 153,735 1.00
9 3.10% 6.89% 129,374 1.00
Avg 3.14% 5.54% 80,037 1.00
P=4
1 2.26% 8.15% 4,078 1.00
2 7.22% 10.01% 26,187 1.00
3 9.44% 11.69% 64,110 1.00
4 9.16% 9.48% 46,406 1.00
5 6.60% 11.86% 149,042 1.00
6 9.83% 10.89% 94,269 1.00
7 6.58% 8.00% 50,337 1.00
8 2.79% 15.31% 170,408 1.00
9 11.53% 11.48% 85,152 1.00
Avg 7.86% 11.17% 76,665 1.00
P=8
1 6.66% 10.77% 2,518 1.01
2 13.93% 14.98% 11,109 1.00
3 15.11% 18.16% 46,088 1.00
4 14.65% 15.83% 53,032 1.00
5 11.09% 16.48% 69,583 1.00
6 11.02% 15.91% 85,982 1.00
7 13.75% 18.13% 105,946 1.00
8 12.84% 19.51% 28,974 1.00
9 15.34% 17.35% 80,477 1.00
Avg 13.30% 17.18% 53,745 1.00
P=16
1 15.36% 20.61% 1,767 1.01
2 24.82% 25.56% 7,259 1.00
3 24.40% 27.45% 36,031 1.01
4 20.60% 22.77% 43,943 1.01
5 16.11% 24.27% 71,736 1.01
6 17.83% 22.28% 66,211 1.01
7 19.75% 25.00% 55,361 1.01
8 17.83% 25.30% 64,796 1.01
9 17.87% 21.59% 74,316 1.01
Avg 19.19% 24.02% 46,825 1.01
P=32
1 21.59% 26.74% 1,184 1.01
2 30.35% 32.32% 4,387 1.02
3 30.06% 34.04% 8,445 1.02
4 27.28% 31.43% 41,783 1.01
5 21.35% 29.40% 42,843 1.01
6 24.04% 29.42% 42,688 1.01
7 22.35% 30.45% 41,347 1.02
8 20.59% 30.48% 37,006 1.02
9 22.19% 29.43% 32,594 1.02
Avg 23.97% 30.58% 28,031 1.02

Table 2: Mesh adaptation results using PMeTiS under

the PLUM environment

Adaptation Pre-Exec Post-Exec

Level Cut % Cut % MaxSR Loadlmb

P=16
1 3.16% 4.38% 10,088 1.02
2 5.34% 7.20% 25,875 1.02
3 7.27% 9.71% 58,887 1.03
4 5.24% 8.62% 134,808 1.03
5 5.77% 8.17% 153,154 1.04
6 4.70% 8.06% 122,151 1.02
7 4.47% 8.45% 159,037 1.02
8 5.31% 7.97% 132,987 1.01
9 4.18% 7.7%% 130,824 1.01

Avg 5.05% 7.81% 103,090 1.02

P=32
1 4.78% 6.45% 5,097 1.01
2 7.56% 10.05% 16,758 1.02
3 10.28% 13.13% 39,565 1.05
4 8.14% 11.60% 73,074 1.06
5 7.59% 11.13% 92,581 1.05
6 6.51% 11.60% 82,751 1.06
7 6.66% 11.43% 88,642 1.03
8 6.88% 11.39% 91,301 1.05
9 6.19% 11.66% 79,662 1.04

Avg 7.18% 10.94% 63,270 1.04

Table 3: Mesh adaptation results using DMeTiS under

the PLUM environment

Adaptation Pre-Exec Post-Exec

Level Cut % Cut % MAXSR Loadlmb

P=32
1 4.65% 15.70% 5,047 1.88
2 19.26% 20.50% 17,393 2.12
3 21.14% 25.26% 44,413 2.12
4 17.13% 28.21% 99,232 1.87
5 29.08% 26.46% 97,280 1.68
6 25.31% 24.38% 86,204 141
7 20.55% 14.17% 78,312 111
8 10.04% 13.08% 72,474 1.05
9 9.41% 14.18% 62,522 1.05

Avg 17.40% 20.30% 62,542 1.59

are not available. Fault tolerance would allow appli-
cations to make use of resources that are constantly

changing during execution.

Acknowledgements

This work is supported by Texas Advanced Research
Program Grant Number TARP-97-003594-013 and by
NASA under Contract Number NAS 2-14303 with

MRJ Technology Solutions.

References

[1] C. Alpert and A. Kahng, “Recent directions in
netlist partitioning,” Integration, the VLSI Jour-

nal, 19(1-2) (1995), pp. 1-81.

[2] R. Biswas and L. Oliker, “Experiments with
repartitioning and load balancing adaptive

meshes,” NASA Ames Research Center, Moffett
Field (1997), Tech Rep NAS-97-021.

[3] N. Chrisochoides, “Multithreaded model for the
dynamic load balancing of parallel adaptive PDE
computations,” Applied Numerical Mathematics,
20 (1996), pp. 321-336.

[4] G. Cybenko, “Dynamic load balancing for dis-
tributed-memory multiprocessors,” Journal of
Parallel and Distributed Computing, 7 (1989),
pp- 279-301.

[5] S.K. Das and D.J. Harvey, “Performance analysis
of an adaptive symmetric broadcast load balanc-
ing algorithm on the hypercube,” Dept Computer
Science, Univ North Texas, Denton (1995), Tech
Rep CRPDC-95-1.

[6] S.K. Das, D.J. Harvey, and R. Biswas, “Adap-
tive load balancing algorithms using symmetric
broadcast networks: Performance study on an
IBM SP2”, Proc. 26th International Conference
on Parallel Processing (1997), pp. 360-367.

[7] S.K. Das and S.K. Prasad, “Implementing task
ready queues in a multiprocessing environment,”
Proc. International Conference on Parallel Com-
puting (1990), pp. 132-140.

[8] S.K. Das, S.K. Prasad, C-Q. Yang, and N.M. Le-
ung, “Symmetric broadcast networks for imple-
menting global task queues and load balancing in
a multiprocessor environment,” Dept Computer
Science, Univ North Texas, Denton (1992), Tech
Rep CRPDC-92-1.

[9] J. Garbers, H.J. Promel, and A. Steger, “Find-
ing clusters in VLSI circuits,” Proc. IEEE Inter-
national Conference on Computer Aided Design
(1990), pp. 520-523.

[10] L. Hagen and A. Kahng, “A new approach to
effective circuit clustering,” Proc. IEEE Inter-
national Conference on Computer Aided Design,
(1992), pp. 422-427.

[11] B. Hendrickson and R. Leland, “A multilevel
algorithm for partitioning graphs,” Sandia Na-
tional Laboratories, Albuquerque (1993), Tech
Rep SABD&83-1391M.

[12] G. Horton, “A multi-level diffusion method for
dynamic load balancing”, Parallel Computing, 19
(1993), pp. 209-229.

[13] G. Karypis and V. Kumar, “Analysis of multi-
level graph partitioning,” Dept Computer Sci-
ence, Univ Minnesota, Minneapolis (1995), Tech
Rep 95-037.

[14] G. Karypis and V. Kumar, “Parallel multilevel
K -way partitioning scheme for irregular graphs,”
Dept Computer Science, Univ Minnesota, Min-
neapolis (1996), Tech Rep 96-036.

[15] B.W. Kernighan and S. Lin, “An efficient heuris-
tic procedure for partitioning graphs”, Bell Sys-
tems Tech. Journal, 49 (1970), pp. 291-307.

[16] G.A. Kohring, “Dynamic load balancing for par-
allelized particle simulations on MIMD comput-
ers,” Parallel Computing, 21(1995), pp. 683-693.

[17] L. Oliker and R. Biswas, “PLUM: Parallel load
balancing for adaptive unstructured meshes,”
NASA Ames Research Center, Moffett Field
(1997), Tech Rep NAS-97-020.

[18] R. Ponnusamy, N. Mansour, A. Choudhary, and
G.C. Fox, “Graph contraction and physical op-
timization methods: a quality-cost tradeoff for
mapping data on parallel computers,” Proc. 7th
Int’l Conf on Supercomputing (1993).

[19] S. Pulidas, D. Towsley, and J.A. Stankovic, “Em-
bedding gradient estimators in load balancing al-
gorithms,” Proc. Int’l Conf on Distributed Com-
puter Systems (1988), pp. 488—490.

[20] K. Schloegel, G. Karypis, and V. Kumar, “Multi-
level diffusion schemes for repartitioning of adap-
tive meshes,” Dept Computer Science, Univ Min-
nesota, Minneapolis (1997), Tech Rep 97-013.

[21] R. Van Driessche and D. Roose, “Load balanc-
ing computational fluid dynamics calculations on
unstructured grids,” Parallel Computing in CFD,
AGARD-R-807 (1995), pp. 2.1-2.26.

[22] A. Vidwans, Y. Kallinderis, and V. Venkatakr-
ishnan, “Parallel dynamic load balancing algo-
rithm for three-dimensional adaptive unstruc-
tured grids,” AIAA Journal, 32 (1994), pp. 495—
505.

[23] C. Walshaw, M. Cross, and M.G. Everett, “Par-
allel dynamic graph-partitioning for unstructured
meshes,” School of Computing and Mathemati-
cal Sciences, Univ of Greenwich, London (1997),
Tech Rep 97/1M/20.

