LOAD BALANCING TECHNIQUES FOR DISTRIBUTED
PROCESSING ENVIRONMENTS

The members of the Committee approve the doctoral
dissertation of Daniel Joseph Harvey

Sajal Das

Supervising Professor

Rupak Biswas

Dianne Cook

Mohan Kumar

Behrooz Shirazi

Bob Weems

Dean of the Graduate School




Copyright© by Daniel Joseph Harvey 2001
All Rights Reserved



LOAD BALANCING TECHNIQUES FOR DISTRIBUTED
PROCESSING ENVIRONMENTS

by

Daniel Joseph Harvey

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON
August 2001



ACKNOWLEDGMENTS

First I want to thank my principal adviser, Dr. Sajal Das, whose encouragement
is a principal reason for my finishing this dissertation. Many times, when I was at the
point of giving up, Dr. Das encouraged me to continue. Dr. Das was also instrumental in
pushing me towards many successful publication efforts. I am sure that this experience
will be vital as I continue to pursue research interests. I also want to express my deepest
appreciation to Dr. Rupak Biswas of NASA Ames Research Center for his help. He always
seemed to have time to critique my work and give the excellent pointers as to how it could
be improved. His extensive knowledge and insight allowed him to consistently focus on
areas that needed clarification. The amount of time he dedicated was well beyond any
expectations that I could have had. I feel very fortunate to have had the privilege of
working with both Dr. Das and Dr. Biswas and I especially value the friendship that we
have developed over the years.

I'm also appreciative to Dr. Lenny Oliker or Lawrence Berkeley National Labora-
tories who took the time to review my work and with whom I was able to co-author some
papers. His insights were very helpful.

I also would like to express appreciation to Drs. Dianne Cook, Mohan Kumar,
Behrooz Shirazi and Bob Weems for being willing to serve on my committee. A special
note of thanks goes to Dr. Weems for helping me work through the administrative details
relating to graduation.

Most of all I would like to express heartfelt appreciation to my family who exhibited
tremendous patience as I worked towards completing my dissertation. There were many

times that they had to endure great sacrifice as I worked two jobs and at the same time

v



worked towards completing my education. I am also grateful that God has given me the
ability to study, to learn, and to pursue research in computer science.

Finally, I am grateful to NASA Ames Research Center (Moffet Field, California,)
for supporting this work during my visit in the summer of 1999 and for making avail-
able multicomputer resources which were used to conduct experiments. Without their
cooperative agreements (NCC-2-5395, and NAS 2-14303) this work would not have been
possible. The State of Texas should also be acknowledged for their Advanced Research
Grant Number TARP-97-003594-013.

June 26, 2001



ABSTRACT

LOAD BALANCING TECHNIQUES FOR DISTRIBUTED
PROCESSING ENVIRONMENTS

Publication No.

Daniel Joseph Harvey, Ph.D.

The University of Texas at Arlington, 2001
Supervising Professor: Sajal Das

Improvements in computer technology over the past several decades have led to
great interest in utilizing distributed multicomputer systems to solve complex problems
that would be otherwise impractical or inefficient using a single processor. To achieve
optimized multicomputer performance, however, it is essential to evenly distribute the
workload among the available processors. For applications such as dynamic mesh adap-
tation of unstructured grids, achieving a balanced load is difficult because of the rapidly
changing nature of the grid.

In this dissertation, the load balancing problem is addressed in several ways. First,
three topology independent dynamic load balancing schemes are proposed that are di-
rectly implementable on a variety of multicomputer architectures including the hyper-
cube. Experiments using synthetically generated loads compare these algorithms to other
popular load balancers and demonstrate that the proposed algorithms compare favorably.
Next, the approach is modified to provide a global view of system load so that the dy-

namic schemes can also be applied to unstructured mesh applications where dynamic

vi



load balancers are not often used. Simulation experiments using workload data obtained
from actual solvers demonstrate that the proposed algorithms are an effective alternative.

Finally, a novel partitioner, called MinEX, is presented that is specifically designed
to execute in a distributed computing environment. Unlike dynamic load balancers, this
approach partitions processor workloads prior to execution. As the load balance shifts,
application processing is temporarily suspended and repartitioning takes place. The
MinEX partitioner has the novel objective to minimize runtime rather than to achieve
an equal workload on each processor. This new approach takes into account the cost of
inter-processor communication, as well as the cost of moving data sets between processors,
and accounts for latency tolerance. MinEX is evaluated by comparing its performance in
two ways. First results are obtained using data produced by unstructured mesh solvers.
Next, a solver for the classic N-body application is developed so that direct compar-
isons between MinEX and MeTiS (a state-of-the-art partitioner) can be made. Results
conclude that MinEX achieves superior performance in a truly distributed computing

environment with lower bandwidths and slower interconnects.
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CHAPTER 1
INTRODUCTION

In the last couple of decades, technological improvements have greatly reduced
the cost of parallel and distributed computing systems. These improvements led to
great interest in developing scheduling algorithms which guarantee efficient use of avail-
able resources. Operating systems have long dealt with issues of local scheduling where
time-slices are allocated to processes executing on a single CPU. Distributed operating
systems must now also deal with global scheduling problems such as allocating processes
to particular processors and possibly moving processes from one CPU to another during
execution. Responsibility for scheduling can be centrally controlled by a single CPU or
responsibility can be distributed throughout the multiprocessor system. Scheduling so-
lutions can be either static or dynamic. In static scheduling algorithms, the decisions are
made prior to execution time when resource requirements are estimated. For example,
application requirements might be predicted based upon previous runs. On the other
hand, dynamic scheduling algorithms allocate/reallocate resources at runtime.

Closely related to the scheduling problem is load balancing. In this case, the
application shifts workload among processors in accordance with system requirements.
Load balancing algorithms, like scheduling, can also be dynamic or static. In static
load balancing algorithms [64, 67], the decisions are made at compilation time when
resource requirements are estimated. On the other hand, dynamic algorithms [15, 25, 35]
allocate/reallocate resources at runtime based on a set of system parameters, which may
determine when jobs can be migrated and also account for the associated overhead in such

a transfer [66]. Determining the parameters to be maintained and how to broadcast them
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among processors are important design considerations, normally resolved by distributed
scheduling policies [28, 52].

A semi-dynamic load balancing method, which is particularly useful for processing
unstructured adaptive meshes [6, 20, 60], makes use of a partitioner. Using this approach,
the system workload is balanced through a partitioning algorithm before execution com-
mences. When the load eventually becomes uneven due to runtime adaptations, exe-
cution is temporarily suspended and the load is re-partitioned and re-balanced. To be
effective, the semi-dynamic approach should take into account the cost of moving data
sets after partitioning and the cost of inter-processor communication that is incurred

when execution continues.

1.1 Contributions of this Dissertation

The purpose of this research effort is to introduce novel dynamic and semi-dynamic
load balancing approaches. The first part of the research introduces three dynamic load
balancing algorithms that utilize a topology independent structure known as a Symmet-
ric Broadcast Network (SBN). These algorithms are analyzed mathematically and also
compared experimentally to several other popular dynamic algorithms with favorable
results. All three of the algorithms achieve excellent load balance, while a heuristic ver-
sion minimizes the communication overhead associated with the balancing process. One
of these algorithms demonstrates the versatility of the approach by a direct hypercube
embedding. Finally, the SBN approach is applied to simulate processing of an unstruc-
tured mesh adaptation application. Mesh adaptation applications traditionally utilize
a semi-dynamic partitioning approach and do not often employ dynamic load balancers
because they generally lack of a global system view. Since dynamic load balancers do
not stop execution as the load is balanced, The success of the SBN algorithms in connec-

tion with this application is an important contribution. SBN’s effectiveness is measured
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by comparing results with a popular semi-dynamic framework, called PLUM [60, 6, 20,
which makes use of any widely available partitioner for load balancing of unstructured
adaptive meshes. Results show that SBN achieves a lower dataset movement cost; al-
beit at a somewhat higher communication cost. In applications where dataset movement
dominates, the SBN approach would be preferred.

The next load balancing approach that is introduced in this dissertation is a par-
titioner, called MinEX, that is specifically designed to run in a distributed environment.
Its primary partitioning goal is to minimize runtime; accomplished by integrating the
required data movement into the partitioning process and accounting for the distributed
computing configuration. The MinEX partitioner also considers latency tolerance factors
through a well defined application interface.

These objectives of MinEX are significantly different from most general purpose
partitioners such as MeTiS [44] which create partitions by equally balancing the pro-
cessing requirements among the processors while keeping communication costs under a
user-specified threshold. General purpose partitioners also give no consideration to data
re-mapping costs or to latency tolerance. For these reasons, the application frameworks
for processing unstructured adaptive meshes, (e.g., PLUM,) breaks up the load balanc-
ing operation into two distinct steps. In the first step, the partitioner is called; while
in the second step, a re-mapping algorithm is invoked to achieve load balance. Com-
parisons with results gathered from PLUM and SBN-based experiments, show that the
MinEX partitioner achieves a good tradeoff between the cost of communication and data
redistribution.

To complement these results, a solver for the N-body application [5] is developed

so that direct comparisons between MinEX and a state-of-the-art partitioner, called
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MeTiS [44, 45, 46], can be made. Results conclude that MinEX achieves superior per-
formance in a distributed computing environment. Specifically, runtimes achieved in a
distributed configuration using the MinEX partitioner are one third of those obtained

when MeTiS is utilized.

1.2 Dissertation outline

This section outlines the organization of the chapters of this dissertation. Chapter 2
describes background information needed in subsequent chapters. Chapter 3 defines
Symmetric Broadcast Networks (SBNs) and describes the three SBN-based dynamic
load balancing algorithms. In chapter 4, the SBN approach is adapted to provide a
global system view and establish its viability as an effective alternative to semi-dynamic
schemes for processing adaptive mesh applications. Chapter 5 further refines the SBN
Basic algorithm and presents experimental results comparing SBN to the PLUM semi-
dynamic framework. The MinEX partitioner is described in chapter 6 and MinEX related
experiments are presented and analyzed in chapter 7. Conclusions along with areas for

future research are discussed in chapter 8.



CHAPTER 2
PRELIMINARIES
This chapter describes preliminary concepts that relate to distributed computing.
For example, categories of distributed architectures are described in section 2.1. Middle-

ware packages that are used in distributed environments are discussed in section 2.2.

2.1 Distributed computing architectures

The load balancing methods proposed in this dissertation are implemented on
either an IBM SP2 or an SGI Origin2000 and also run on low cost remotely connected
clusters of processors. The SP2 belongs to the class of what is commonly known as
distributed-memory multicomputers, whereas the Origin2000 is a distributed shared-
memory machine. The architectural features of these configurations are briefly discussed

in sections 2.1.1 and 2.1.2 for the sake of completeness.

2.1.1 Distributed-memory computers

In a distributed-memory or message-passing architecture, each processor has its
own local memory which only it can access directly. Since there is no common bus, re-
mote memory is not directly addressable and data are shared by explicitly sending and
receiving messages. In this message-passing model, data transfers require operations to
be performed by both the sending and the receiving processors. Such architectures are
inherently scalable because they do not require tight coupling from the system to main-
tain address space or data coherence. A key performance advantage of these machines is
the ability for the programmer to explicitly associate specific data with processes. This

allows the system to effectively use caches and memory hierarchy on each processing
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unit. Unfortunately, writing message-passing code is a complex task since the user must
explicitly partition the data among the local processors. Once a data structure is dis-
tributed, all sections of the code using that data must be implemented in parallel. Thus,
it is very difficult to incrementally parallelize a serial code using this paradigm.

The IBM 9076 Scalable Power Parallel SP2 system is an example of a distributed-
memory parallel system [2]. Each node consists of a six-instruction issue superscalar
RISC6000 processor, running at 66.7 MHz. The nodes are connected through a high-
performance switch called the Vulcan chip. The topology of the switch is an any-to-any
packet switched network similar to an Omega network. An advantage of this intercon-
nection mechanism is that the available bandwidth between any pair of communicating

nodes remains constant! regardless of where in the topology the two nodes lie.

2.1.2 Shared-memory multicomputers

A distributed shared-memory architecture combines physically distributed mem-
ory together with hardware which treats the memory as a unified, global logical address
space. Thus, all of the physical memory is directly addressable from any processor.
These systems have the advantage of efficiently supporting a shared-memory program-
ming model, while preserving scalability. A drawback, however, is the overhead necessary
for maintaining address and data coherence. To maintain a single global address space,
the system must be tightly coupled at either the software or the hardware level. This

overhead can degrade performance with increasing number of processors.

!The same does not hold true for direct networks such as rings, meshes, or multidimensional
toroids which require an additional performance optimization to consider the number of hops between
two communicating nodes.
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An example of a distributed shared-memory architecture is the SGI Origin2000,
the first commercially available 64-bit cache-coherent nonuniform memory access (CC-
NUMA) system [70]. Each CPU is a R10000 four-way superscalar RISC processor running
at speed of up to 195 MHz.

A small high-performance switch connects two CPUs, memory, and I1/O. This mod-
ule, called a node, is then connected to other nodes via a hypercube interconnection net-
work. An advantage of this interconnection system is that additional nodes and switches
can be added to create larger systems that scale with the number of processors. The
memory access time is no longer uniform as in a truly shared-memory architecture, and
varies depending on its location. Each processor in the Origin2000 has a private cache;
specialized hardware maintains the image of a single shared memory as well as cache

coherence.

2.1.3 Clusters of workstations

The supercomputing systems described in sections 2.1.1 and 2.1.2 are designed with
specialized high-speed networks. In recent years, however, workstations are often linked
with conventional networks, such as Ethernet, FDDI, or ATM to form parallel systems.
Networks of workstations, (NOWs), take advantage of the fact that workstations are
relatively inexpensive, widely available, and often idle. Additionally, the availability of
relatively low-cost high-speed networks makes this approach a good price/performance
value for compute-intensive problems. Unfortunately, NOWs can efficiently support fewer
parallel applications than specialized massively parallel processors, (MPPs), due to their

lower bandwidths and higher communication latencies.

2.2 Distributed computing middleware
This section describes middleware that is utilized for data sharing and application

processing in distributed computing environments.



2.2.1 Information Power Grid (IPG)

The Information Power Grid (IPG) [36] is intended to provide a convenient interface
to the vast, heterogeneous, and geographically-separated computing resources of NASA
and/or other IPG partners. The interface hides details of machine particulars, such as
location, size, connectivity, and name, thereby presenting a unified virtual machine to
developers. A toolkit for ensuring security, robustness, portability, and transparency
is being established by the Globus project [38, 43] which is a joint effort by Argonne
National Laboratory and the University of Southern California’s Information Sciences
Institute.

There are a number of software challenges that must be addressed before actual
applications can be run in a distributed fashion on the IPG. One of the most important
issues is to develop efficient architecture-independent (i.e., portable) solutions for real-
life problems (e.g., a numerical solver) running on various machine platforms connected
by the IPG. Another important issue is to define performance metrics for assessing the
impact of high-latency communications on running a single instance of the application
(solver) on multiple clusters (super-nodes) of machines. This will guide the design of more
latency-tolerant implementations in which communication will be hidden under and/or
overlapped with computation. Clearly, dynamic load balancing in such a heterogeneous

environment will play a central role in the overall performance.

2.3 Message-passing programming

One of the fundamental issues in parallel computing is the choice of program-
ming paradigms. Several paradigms have evolved over the last two decades, which in-
clude shared-memory programming, message-passing programming, data parallel pro-
gramming [50], and multi-threading [12, 40, 72]. Some of these paradigms have turned

out to be architecture-independent in the sense that parallel programs, software, and
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tools developed with their help can be easily and efficiently ported onto various machine
platforms. In this dissertation, the message-passing programming model is used.

Message passing is a popular paradigm for a wide range of parallel systems since
it offers programmers direct access to communication between processes on different ma-
chines. With the explicit message-passing model, processes in a parallel application have
their own private address spaces and share data via explicit messages. Several vendors
have demonstrated a message-passing library that is efficiently implemented and portable.
However, because of the need for explicit communication, message passing presents a com-
plex programming interface and is difficult to debug. Furthermore, the performance of an
application depends heavily on the expertise of the programmer. Programs expressed in
this manner may run on distributed-memory multiprocessors, distributed shared-memory
machines (CC-NUMA), or a heterogeneous network of workstations. Message Passing
Interface (MPI) [58] and Parallel Virtual Machine (PVM) [37] are the two most popu-
lar standards for writing message-passing programs, and were successfully ported onto
a large number of the above platforms. Active Messages is a low level message-passing
programming model that makes machine-dependent communication resources directly
available to the programmer.

Although extensive experiments were conducted in this research with both PVM
and MPI, MPI is preferred since it has shown superior results on high-performance archi-
tectures. Active Messages was not utilized due to its lack of portability and its low-level
characteristics. Therefore, results will be reported based upon experience with using
MPI for parallel implementations of load balancing algorithms on different platforms.
The easy portability of the parallel programs developed on these machines demonstrate

the versatility of the algorithms to be presented.
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2.3.1 Message Passing Interface

The MPI (Message Passing Interface) software package is currently the most
widely-used standard for writing message-passing programs, with its MPI-2 specifica-
tions released recently [58]. A grid-enabled implementation of MPI (MPICH-G) was
also developed so that users can run MPI programs across remotely connected clusters
of processors using the same commands that would be used on a tightly coupled par-
allel computer [33, 34]. MPICH-G is used by NASA with the Globus meta-computing
toolkit [32] to implement their Information Power Grid (IPG).

The main goals for designing this interface are portability, efficiency, and pro-
grammability. MPI provides the syntactic and semantic core of library routines for a
distributed-memory communication environment. Providing this high-level standardiza-
tion allows an efficient implementation of lower-level message-passing functions, and the
possibility of hardware support by various vendors. MPI is suitable for use by general
MIMD (multiple instruction, multiple data stream) programs, as well as those written in
the more restricted style of SPMD (single program, multiple data stream). It is a flexible
communication library which can be used in a heterogeneous environment and contains
bindings to both C and Fortran77. MPI-2 extends the language bindings to C++ and
Fortran90.

MPI provides an interface that allows processes in a parallel program to commu-
nicate with one another. In MPI-1, processes cannot be added to or deleted from an
application after it has been started. The MPI-2 process model, however, allows for the
dynamic creation and termination of processes after an MPI application has started (sim-
ilar to that allowed by PVM). Various communication primitives are supported. Point-to-
point communications allow simple blocking and non-blocking send/receive primitives.

Collective communications involve groups of processes, and allow operations such as
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barrier synchronizations, gather/scatters, and global reductions. MPI-2 also provides
one-sided communications. This feature allows one process to specify all communication
parameters for both the sending and the receiving sides. This is a powerful construct
which allows implementors to take advantage of fast communication mechanisms provided
by various platforms, such as coherent or non-coherent shared memory, DMA engines,
hardware-supported put/get operations, and communication co-processors.

All of the algorithms proposed in this dissertation assume a message passing envi-
ronment and use the MPI message passing package for communication between proces-

SOTI'S.

2.3.2 Parallel Virtual Machine (PVM)

PVM is a software environment, similar to MPI, that allows a set of heterogeneous
computers to run as a single multiprocessor system, referred to as a virtual machine [37].
This virtual machine consists of a user-defined collection of systems including serial,
parallel, and vector computers. All machines in the system must run under UNIX. Once
the virtual machine is defined, PVM includes routines to automatically spawn tasks on
the individual processors and allows them to communicate and synchronize with each
other. Each machine is called a host. One processor is usually designated to run the
PVM console (PVMC,) also known as the managing process. All other processors of the
virtual machine run the PVM daemon (PVMD). PVMC provides a means for interfacing

with the PVM library, and PVMD takes care of the task of message passing.

2.3.3 Active Messages

Active Messages [27] is an asynchronous communication mechanism designed to
mitigate the message-passing overhead. The idea is to overlap communication latency
with computation by exposing the full hardware capabilities to the programmer. Each

Active Messages contains a handler address in addition to the data being transferred.
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When messages arrive at their destination, the ongoing computation is interrupted and
the handler is executed. The handler quickly extracts the message out of the network,
and integrates it into a user-specified memory address with a small amount of work. This
mechanism relies on a uniform code image in all communicating nodes, as is commonly
used in the SPMD programming model. Active Messages are intended to serve as building
blocks for creating higher-level communication libraries. The MPI-2 standard, for exam-
ple, allows for one-sided communication, and could be built on top of Active Messages.
The disadvantage of this asynchronous communication style is increased programming

complexity and higher probability of deadlock within the network.



CHAPTER 3
SBN-BASED LOAD BALANCING ALGORITHMS

This chapter deals with decentralized load balancing in distributed-memory multi-
computers in which processors are connected by a point-to-point network topology and
communicate with one another using message passing. The network is homogeneous
and any job can be serviced by any processor; however, jobs cannot be rerouted once
execution begins. The length of a processor’s local jog queue determines its workload.

In particular, three efficient dynamic load balancing algorithms are proposed which
make use of a logical and topology-independent communication pattern among proces-
sors, called a Symmetric Broadcast Network (SBN,) introduced in [16, 17]. These algo-
rithms will be called (i) Basic SBN algorithm, (ii) Hypercube Variant, and (iii) Heuristic
Variant.

SBN-based load balancing can be initiated by any processor that has too many
or too few jobs to process, based on certain threshold values. Load balancing messages
are first broadcast so that the current system load of jobs can be estimated. This is
followed by distribution messages which reassign jobs and/or processors to minimize the
possibility of processors becoming idle. SBN-based load balancing runs concurrently
while application processing continues.

A topology-independent logical network such as an SBN, helps provide predictable
communication patterns to applications that make use of wide area networks of pro-
cessors for load balancing and inter-processor communication. An SBN is also effective
when implementing message-passing applications for multicomputer systems in a portable

manner.

13
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The SBN topology can also be embedded into specific networks if efficiency is an
issue. For example, the Hypercube Variant algorithm naturally adapts to a hypercube
topology, and is thus used to compare with other existing dynamic load balancing strate-
gies implemented on a hypercube. This also helps to determine whether the measured
performance improvements are due to the effects of the network topology or the proposed
load balancing schemes themselves.

Based on their operational characteristics, the SBN-based algorithms can be clas-
sified (according to [68]) as: (a) Adaptive, since the performance adapts to the average
number of queued jobs; (b) Symmetrically Initiated, since both senders and receivers can
initiate load balancing; (c) Stable, since the network is not burdened with excessive load
balancing traffic; and (d) Effective, since system performance does not degrade while
balancing workloads.

The performance of the proposed SBN-based algorithms are analyzed by conduct-
ing two sets of extensive experiments on a 32-processor SGI Origin2000 machine, using
the Message-Passing Interface (MPI) paradigm. A preliminary description of these ex-
periments that were performed on an IBM SP2 is presented in [18]. These experiments
use Poisson-distributed synthetic loads and compares the performance with other meth-
ods such as Random [25], Gradient [54, 57], Sender Initiated [26], Receiver Initiated [26],
Adaptive Contracting [26], and Tree Walking [69], as summarized in section 3.1. The ex-
periments demonstrate that the quality of load balancing achieved by the SBN approach
compares favorably with respect to three metrics: (i) total completion time, (ii) message
traffic per processor, and (iii) maximum variance in processor idle time. For example,
under heavy system loads, the SBN algorithms complete in 6% to 22% less time than
other balancing algorithms that are analyzed in this chapter. Idle time is also reduced by

over two thirds. Under light system loads, the SBN-based algorithms incur significantly
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less message traffic as compared to other popular balancing algorithms such as Gradient
and Receiver Initiated.

The second set of experiments, described in chapter 4, apply the SBN approach to
a dynamic mesh adaptation application with actual workload data obtained from a rotor-
craft acoustics experiment. Results demonstrate that the SBN-based load balancing can
be effective for this class of applications by providing a global view of the system load

and by overlapping the load balancing activity with actual processing.

3.1 Popular dynamic algorithms

A wide variety of dynamic load balancing algorithms are available for improving
multiprocessor performance [64, 67]. In this section, the underlying characteristics of
some of these algorithms (as defined in the literature) are summarized. These algorithms
are used to compare the performance of the SBN-based algorithms.

Random [25]

If the number of jobs queued at a given processor is larger than a certain threshold,
the additional jobs generated by the processor are randomly distributed among its neigh-
bors. Although a single distribution message may contain multiple jobs, a particular job
cannot be migrated multiple times. In other words, once a job is migrated, it is queued
for processing.

Gradient [54, 57|

In this approach, jobs migrate from overloaded to lightly-loaded processors based
on a systemwide gradient. Each processor maintains, for each of its immediate neigh-
bors, the minimum number of communication hops to the nearest lightly-loaded proces-
sor. Whenever these values change, they are broadcast to all the neighbors. However,
because of network dynamics, this is only an approximation to the true system load.

Each processor also has a load status flag which, by comparison with system thresholds,
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determines whether the processor is overloaded, lightly loaded, or moderately loaded.
Jobs are routed to the neighbor lying on the path to the nearest lightly-loaded processor,
and a job can migrate several times before being finally processed.

Receiver Initiated [26]

In this scheme, load balancing is triggered by a lightly-loaded processor. A pro-
cessor with a load level below the system threshold, broadcasts a job request message
to its neighbors which contains queue length information. Upon receiving this message,
each neighbor compares its own queue length to that of the requesting processor. If
the local queue size is larger, the neighbor processor replies with a single job. To pre-
vent instability under light system load conditions, the requesting processor waits for a
specified amount of time for a reply before initiating another request for jobs. Like the
Gradient algorithm, it is possible for a job to be migrated multiple times before being
finally processed.

Sender Initiated [26]

This algorithm initiates load balancing when processors become overloaded. To
prevent instability under heavy system loads, each processor exchanges load information
with its neighbors. More precisely, load values are exchanged when a local job queue
size is halved or doubled in length, so the load exchange occurs less frequently than the
system load changes. When jobs are generated, they are distributed to lightly-loaded
neighbors. Like the Random algorithm, multiple job migration is not allowed.
Adaptive Contracting [26]

In this algorithm, the originating processor distributes bids to all its neighbors
when jobs are generated. The neighbors respond to the bid with a message containing the
number of jobs in their respective local queues. The originating processor then distributes

jobs to those neighbors that have loads smaller than the system threshold. The number
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of jobs migrated is such that jobs are equally distributed among the originating processor
and its lightly-loaded neighbors.
Tree Walking [69]

This algorithm utilizes a binary tree topology. The fixed root processor initiates
a load balancing operation when one of the processors becomes idle. Processing is tem-
porarily suspended when load balancing is underway. Load balancing is achieved by first
broadcasting a balance message through the network. Processors respond by sending
their current load level back towards the root using a global reduction operation. The
correct systemwide load level is then accurately broadcast. Finally, jobs are distributed
so that every processor has an equal number of jobs.

Despite some similarities between the SBN-based approach and the Tree Walking

Algorithm (TWA,) there are several major differences as follows:

) TWA always initiates load balancing from a single root processor. TWA is, there-
fore, more restrictive and has less potential for being fault tolerant. SBN balancing

allows any processor to initiate load balancing.

° Application processing is temporarily suspended when TWA executes. TWA is
unable to mask balancing overhead by overlapping processing and load balancing.
SBN balancing proceeds concurrently as application processing continues; suspen-

sion of application processing is not required.

° TWA is designed to perfectly equalize the job count at every processor leading
to more message passing. SBN balancing attempts to minimize the possibility
that a particular processor will become idle. A perfectly equalized job count is

unnecessary.
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° TWA triggers load balancing only when processors become idle. SBN anticipates

idle conditions and triggers balancing ahead of time.

° TWA requires communication messages to be broadcast to all processors when
balancing the system. The SBN Heuristic algorithm (details given in section 3.3.3)

allows balancing to be accomplished without this requirement.

3.2 Basic SBN concepts
This section defines the Symmetric Broadcast Networks (SBNs) and describes their
properties along with the general characteristics of the proposed load balancing algo-

rithms that are based on SBNs.

3.2.1 Definition of SBN

An SBN defines a communication pattern (logical or physical) among the P proces-
sors in a multicomputer system [16, 17]. An SBN(d) of dimension d > 0, is a (d+1)-stage
interconnection network with P = 2% processors in each stage. It is constructed recur-

sively as follows:

° A single processor forms the basis network SBN(0) consisting of a single stage,

denoted as stage 0, with no communication link.
e  For d > 0, an SBN(d) is obtained from a pair of SBN(d — 1)s as follows:

(i) Keep the processor labels in the first SBN(d—1) unchanged as 0 through 241 —1;

relabel the processors of the second SBN(d — 1) as 2¢~! through 2¢ — 1.

(ii) Create an additional communication stage d, containing processors 0 through
2¢ — 1. Connect each processor j in stage d — 1 to processor (j + 2% 1) mod 2¢ in

stage d.

(iii) If stage d — 2 exists, for each processor j in stage d — 2, define k to be the
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successor of j in stage d — 1. Likewise, define m to be the successor of k in stage d
(as just created in step (ii) above). Connect processor j in stage d—2 to processor m

in stage d — 1.

SBN(2)

@
&
®
w

SEEEEEEe

Figure 1. Construction of SBN(3) from a pair of SBN(2)s; Dashes are new connections.

An example of how an SBN(3) is formed from two SBN(2)s is shown in figure 1.
An SBN defines unique communication patterns among the processors in the network.
For any source processor at stage d of SBN(d), there are d = log P stages of commu-
nication where each processor appears exactly once. The successors and predecessors
of each processor in a given stage i are uniquely defined by specifying the label of the
originating processor and the communication stage number. Messages originating from

source processors are appropriately routed through the SBN.
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3.2.2 Properties of SBN

Stage 3 Stage 2 Stage 1 Stage 0 Stage 3 Stage 2 Stage 1 Stage 0

(@) ()

Figure 2. Two communication patterns in SBN(3); (a) processor 0
pattern, (b) processor 5 pattern.

Among a total of eight possible communication patterns in SBN(3), consider the
two patterns shown in figure 2. The paths in figure 2(a) are used to route messages
originating from processor 0, while those in figure 2(b) are for messages originating from
processor 5. Let ng denote a processor label at stage s in figure 2(b) and let n§ be the
corresponding processor label in figure 2(a). Then n§ = n§ @5, where @ is the exclusive-
OR operator. In general, if n} is the corresponding processor in the communication
pattern for messages originating from source processor z, then n} = nj@z. Thus, all SBN
communication patterns can be derived from the template pattern having processor 0 as
the root. The predecessor and two successors of n§ can then be computed as follows:

Predecessor: ((n§—2°)Vv2°+t1) mod 2¢, if 0 < s < d (V is the inclusive-OR operator,)
Successor_1: nf + 2571 if 1<s<d,

Successor_2: nf — 2571 if 1<s<d.

Figure 2 illustrates two possible SBN communication patterns, but many others can
easily be derived by slightly altering the SBN definition to fit a given network topology

and application requirements. Multiple randomly-selected SBN patterns help distribute
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messages more evenly, enhance network reliability, and allow various applications to be
written using different communication patterns. For example, the SBN communication
pattern for processor 0 can be defined with the help of a one-dimensional array imple-
mentation of a full binary tree such that the predecessor and successors of a processor

are given by:

Predecessor: [%(S’J , if 0<s<d,

Successor_1: 2 xni+1, if 1 <s<d,
Successor_2: 2 x n§, if 1 <s<d.

The SBN definition is now modified to accomplish an embedding onto a hypercube
topology, as will be required for the Hypercube Variant of the algorithm. This embedding
uses a modified binomial spanning tree, which is actually two binomial trees' connected
back to back. Figure 3 shows such a communication pattern for a 16-processor network
which is used to route messages originating from processor 0. The solid lines of the
diagram represent the actual SBN pattern, whereas the dashed lines are used to gather
load balancing messages at a single destination processor (processor 15, in this case.)
This embedding ensures that all successors and predecessors at any communication stage
are adjacent processors in the hypercube. Also, every originating processor has a unique
destination. Finally, if the processors are numbered using a binary string of d bits,
the number of predecessors for a processor z is max {1,b}, where b is the number of

consecutive leftmost 1-bits in the binary identifier of z.

LA binomial tree B(k) is an ordered tree defined recursively as follows [13]: B(0) consists of a
single processor; B(k) consists of two B(k — 1)s linked together such that the root of one is the leftmost
child of the root of the other.
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Figure 3. Modified binomial spanning tree used as a hypercube SBN.

3.2.3 SBN-based load balancers

Some general features that are shared by all three SBN-based dynamic load balanc-
ing algorithms are described in this chapter. Also described are various system thresholds,
the two types of messages that are processed by the SBN approach, and pseudo codes
for the procedures common to all three algorithms.

System thresholds

In general, many load balancing algorithms are very susceptible to the choice of
system thresholds [63]. A proper selection of these threshold values has proven helpful
in optimizing the SBN-based algorithms as well.

The proposed SBN-based algorithms adapt their behavior to the system load. Un-
der heavy (respectively, light) loads, the balancing activity is primarily initiated by pro-
cessors that are lightly (respectively, heavily) loaded. This activity is controlled by two
system thresholds: MinTh and MaxTh, which are respectively the minimum and the max-
imum system load levels. The system load level, SysLL, is the average number of jobs
queued per processor. If a processor p has a queue length QLen(p) < MinTh, load bal-

ancing is initiated. If, on the other hand, QLen(p) > MaxTh, the extra jobs ExLoad =
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QLen(p)— MaxTh are distributed through the network, without using explicit load bal-
ancing messages. However, if this distribution overloads a processor in the final stage
(stage 0), a full load balancing operation is triggered.

The performance of the algorithms is affected by the chosen values for MinTh and
MaxTh. For instance, MinTh must be large enough to receive sufficient jobs before a
lightly-loaded processor becomes idle. However, it should not be too large to initiate
unnecessary load balancing. Similarly, if MaxTh is too small, it will cause an excessive
number of job distributions, and if it is too large, jobs will not be adequately distributed
under light system loads. Basically, once there is sufficient load on the network, very
little load balancing activity should be required.

Message types

Two types of messages are processed by the SBN-based algorithms. The first type
is a balancing message which originates from an unbalanced processor and is then routed
through the SBN. The cumulative total of queued jobs, TotalJQ, is computed to obtain
a snapshot value of SysLL.

The second type of message is a distribution message, which is used during a load
balancing operation to route the TotalJQ value though the network and to reassign jobs
after the balancing message is broadcast. Each processor upon receipt of such a message,
updates its local values of SysLL, MinTh, and MaxTh. Distribution messages can also be
sent to predecessor processors prior to completing the broadcast of the balancing message.
This action occurs so that jobs can be assigned to predecessor processors having less than
MinTh jobs queued and about to go idle. Finally, distribution messages are sent when a
load balancing operation is not in progress and a processor has greater than MaxTh jobs

queued. In this case, ExLoad jobs are reassigned.
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If the communication from one processor to its neighbors is completed in constant
time, a single load balancing operation requires O(log P) time since there are d + 1 =
(log P) + 1 communication stages in SBN(d). However, if multiple balancing operations
are processed simultaneously, the worst case communication complexity can be shown to
be O(log® P) [16]. To reduce message traffic, a processor does not initiate additional load
balancing activity until all previous balancing messages passing through it have been
serviced.

Common procedures

All three of the load balancing algorithms consist of four key procedures. The
first two, GetBalance and GetDistribute, are used to process balancing and distribution
messages that are received, while the other two, Balance and Distribute, route those
messages to the successors in the SBN. Implementation details of these procedures depend
on the particular choice of load balancing algorithm. Figure 4 presents the pseudo code
that is common to the SBN-based load balancing algorithms, and is executed in parallel
by every processor.

The UpdateLoad procedure adjusts the system thresholds described in section 3.2.1.
It is called by the procedures, GetBalance and GetDistribute, and completes the load
balancing operation at each processor.

Note that ConstParam is a user-defined parameter that is used to set the minimum
MinTH value. In the experiments performed, it was found that setting ConstParam = 2
proved to be the most effective value. However, the optimal setting of ConstParam
could vary based on job characteristics. The MinTh setting minimizes the possibility
that processors will go idle before the system load is balanced. The setting of MaxTh

grows exponentially with SysLL because the need for load balancing activity decreases
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rapidly as SysLL increases. The mathematical justification for this policy is presented in

section 3.3.4.

Procedure Main
Repeat forever
Call GetBalance to process balancing messages received
Call GetDistribute to process distribution messages received
If (QLen(p) > MaxTh)
ExLoad = QLen(p) — MaxTh
Call Diustribute to route ExLoad jobs through the SBN
If (QLen(p) < MinTh)
Call Balance to initiate a balance operation and determine TotalJQ
Resume processing of application program
End Repeat

Procedure UpdateLoad(TotalJlQ)

SysLL = [ TotalJQ / P |

MaxTh = SySLL +92 | SysLL / ConstParam |

MinTh = SysLL — 1

If (SysLL > ConstParam) MinTh = ConstParam
Return

Figure 4. Common pseudo code for SBN-based load balancing algorithms.

3.3 Proposed algorithms

Based on the SBN concept, a baseline dynamic load balancing strategy and two
variants are proposed in this dissertation. The Basic algorithm and the Hypercube
Variant attempt to accurately compute and maintain the value of SysLL, whereas the

Heuristic Variant estimates it.

3.3.1 Basic SBN algorithm
In this algorithm, balancing messages are routed through the SBN(d) from the
source (root) at stage d to all the processors at stage 0. These messages are then routed

back to the root so that TotalJQ can be computed. Thus, the originating root processor
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Procedure GetBalance
While (balancing messages remain to be processed)
If (QLen(processor sending this message) < MinTh)
Route | QLen(p) / 2 | jobs to processor sending this message
If (no balance operation active from the SBN root processor)
Increment count of simultaneous balance operations being serviced
If (Stage(p) == 0) Call Balance to route QLen(p) value towards root processor
Else Indicate two balancing messages to be gathered from successors
Call Balance to route balancing message to successors
Else
If (second balancing message is to be gathered from successors) Continue
If (Stage(p) ==d)
Call UpdateLoad(TotallQ)
ExLoad = QLen(p) — SysLL
Call Distribute to route ExLoad jobs & TotalJQ value to successors
Decrement count of simultaneous balance operations being serviced
Else Call Balance; route (QLen(p) + QLen(successors)) value towards root processor
End While
Return

Procedure GetDistribute
While (distribution messages remain to be processed)
QLen(p) = QLen(p) + JobsRecv
If (TotalJQ value contained in message received)
Call UpdateLoad(TotallQ)
Route min(QLen(p) — SysLL, SysLL — QLen(predecessor)) jobs to predecessor
Decrement count of simultaneous balance operations being serviced
If (Stage(p) == 0)
If (QLen(p) > MaxTh) Call Balance to initiate new balance operation
Else ExLoad = QLen(p) — MaxTh
If (this is a balance operation) ExLoad = QLen(p) — SysLL
Call Distribute to route ExLoad jobs and/or TotalJQ value to successors
End While

Return

Procedure Balance
If (Stage(p) == d)
If (balance operation already underway) Return
Increment count of simultaneous balance operations being serviced
Indicate that a balancing message is expected from successor
Route the balancing message to next SBN stage
Return

Procedure Distribute
If ((this is a non-balance distribution) And (balance operation is underway))
Inhibit the distribution and Return
QLen(p) = QLen(p) — ExLoad
If ((ExLoad > 0) Or (TotalJQ value to send)) Route distribution message to successors
Return

Figure 5. Basic SBN algorithm pseudo code.
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has an accurate snapshot value of SysLL. Next, distribution messages are sent to relocate
jobs and to broadcast the TotalJQ value. All processors then update their local SysLL,
MinTh, and MaxTh. The extra load (ExLoad) of jobs are routed as part of this distribution
to balance the system load. In addition, if QLen(p) < SysLL for a processor p, the need for
jobs is indicated during the distribution process. Successor processors respond by routing
back an appropriate number of excess jobs, if available. Figure 5 presents the pseudo
code of the Basic SBN algorithm where Stage(p) denotes the SBN stage of processor p
for a given communication pattern (see figure 2) and JobsRecv is the number of jobs
received by it in a distribution message.

To illustrate the operation of this algorithm, consider SBN(3) in figure 6(a). The
label and QLen(p) for each processor p are respectively shown inside and outside the
corresponding circle. For example, processor 6 has ) = 3 jobs queued for execution. At
processor 0, initial values are SysLL = L = 4, MinTh = m = 2, and MaxTh = M = 6. After
a load balancing request is sent through the SBN and then routed back to processor 0,
these values are updated as L = 8, m = 2, and M = 24, using the UpdateLoad procedure
given in figure 4. Note that when the balancing is initiated, processor 4 distributes half
of its QLen(p) jobs (i-e., |3/2] = 1) back to processor 0. This distribution is shown by
the label on the arrow in figure 6(a).

Distribution messages are then used to route excess jobs to the successor processors
or to indicate a need for jobs if the QLen(p) < SysLL. Jobs are routed back to the
predecessors when appropriate. Figure 6(b) shows the result of this distribution where
the labels on arrows indicate the number of jobs routed between processors.

To balance P processors, P — 1 balancing messages are first sent through the
SBN, which are then routed back to the root processor so that the SysLL value can be
computed through a global reduction operation. Finally, P — 1 distribution messages are

sent to balance the load as well as broadcast the TotalJQ value through the network.
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Figure 6. Load balancing example using Basic SBN algorithm. Jobs
distributed; (a) during balancing, (b) during distribution.

Note that, if a processor has an immediate need for jobs that can be supplied during
load balancing, additional distribution messages are sent from neighboring processors to
satisfy the need. If J such messages are required, a total of 3P — 3 + J messages will be
have to be processed. Since J = O(P), the total number of messages to be processed is
O(P). The depth of the SBN network being O(log P), the total time required to complete

a load balance operation is O(log P).

3.3.2 Hypercube variant

The SBN approach was adapted for implementation on a hypercube topology, using
the modified binomial spanning tree illustrated in figure 3. This algorithm uses the same
control variables (SysLL, MinTh, and MaxTh) and processes balancing and distribution
messages in the same manner as the Basic SBN algorithm. However, in embedding the
SBN onto a hypercube, (see figure 3,) the processor r at stage d sends a balance message
to each of its adjacent processors at stage d — 1. These messages are then routed through
the hypercube network and eventually collected at the single destination processor ¢ at
stage 0. Processor ¢ then accurately computes the current SysLL value and initiates the
distribution process by routing distribution messages back towards the root processor at

stage d. Note that the exclusive-OR property described in section 3.2.2 still holds. This
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property allows any processor to correctly determine the successors and predecessors if
the stage number and the root processor are given.
Other differences between the Hypercube Variant and the Basic SBN algorithm

are as follows.

° In the Hypercube Variant, the value of TotalJQ is computed when all balancing
messages arrive at the destination processor. Unlike the Basic algorithm, this is
possible because there is a unique destination for every originating processor in the
hypercube embedding. Distribution messages are then routed back to complete the
load balancing. Since there are P — 1 + g — 1 interconnections in the modified
binomial spanning tree (see figure 3,) a load balancing operation requires 3P — 4
messages excluding the distribution messages sent between neighbors to satisfy the

immediate need for jobs.

° Balancing messages always proceed from the root processor (at SBN stage d of the
Hypercube Variant) towards stage 0. This contrasts with the Basic SBN algorithm
where balancing messages first proceed from stage d to stage 0, and are then routed

back to stage d.

° To minimize the communication overhead in the Hypercube Variant, messages are
gathered from the previous stage whenever more than one message is expected.
The Basic SBN algorithm only needs to gather messages that are being routed
back towards to root processor (because messages going in the other direction have

only one predecessor.)

° The network topology for the Hypercube Variant is such that the number of pre-

decessor and successor processors vary at different communication stages.
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Consider the hypercube of dimension three shown in figure 7 (a) and 7(b) where
the symmetric broadcast communication paths are shown originating from node 3 as the
root to the other nodes of the network. The label and QLen(p) for each processor p are
respectively shown inside and outside the corresponding circle. For example, processor 6
has @ = 10 jobs queued for execution. At processor 3, initial values are SysLL = L = 6,
MinTh = m = 2, and MaxTh = M = 14. After a load balancing request originating from
processor 3 is sent through the SBN, the UpdateLoad procedure in figure 4 is used to
updatethese values as L =7, m = 2, and M = 15.

Note that as the balancing message is sent through the SBN, processor 3 embeds
a need for two jobs from each of its successors. The following formula is used for this

calculation (which is different that that used by the Basic SBN algorithm:)
JobRQ = [(ExLoad)/(numberofsuccessors)]

Only processor 7 can immediately return jobs upon receipt of the balance message since
it is the only successor to processor 3 with QLen(p) > SysLL. This distribution is shown
by the label on the arrow in figure 7(a).

Distribution messages are then used to route excess jobs to the successor processors
or to indicate a need for jobs if the QLen(p) < SysLL. Jobs are routed back to the
predecessors when appropriate. Figure 7(b) shows the result of this distribution where

the labels on arrows indicate the number of jobs routed between processors.

3.3.3 Heuristic variant

Both the Basic algorithm and the Hypercube Variant are expensive since a large
number of messages has to be processed to accurately maintain the SysLL value. The
Heuristic Variant attempts to reduce this overhead by terminating load balancing opera-
tions as soon as QLen(p) is sufficiently large. In general, this strategy reduces the number

of messages although O(P) messages are still needed in the worst case. The pseudo code
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Figure 7. Load balancing example using Hypercube Variant. Jobs
distributed; (a) during balancing, (b) during distribution.

in figure 8 gives the operational details of the Heuristic Variant of the SBN-based load
balancing algorithm.

Similar to the Basic algorithm, load balancing is initiated by processor p when
QLen(p) < MinTh by sending a balancing message to its SBN successor. However, in the
Heuristic Variant, the processor that receives this message estimates SysLL by averaging
QLen(p) over the processors through which the balancing message has already passed.
If QLen(p) > SysLL, an appropriate number of jobs (ExLoad = QLen(p)/2) is then re-
turned via a distribution message as shown in the GetBalance procedure in figure 8. If
QLen(p) < SysLL, the balancing message is forwarded to the next SBN stage. Otherwise,
the load balancing procedure is terminated. Detailed mathematical justifications for the

Heuristic Variant are discussed later in section 3.3.4.
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Procedure GetBalance
While (balancing messages remain to be processed)
TotalJQ = [ P x (QLen(p) + QLen(predecessors)) / (d — Stage(p) + 1) |
01dSysLL = SysLL
Call UpdateLoad(TotallQ)
ExLoad = | QLen(p) / 2|
If (ExLoad > 0)
If (QLen(p) < SysLL)
Call Balance to route balancing message to successors
Else
Call Distribute to route ExLoad jobs to the predecessor
End While

Return

Procedure GetDistribute
While (distribution messages remain to be processed)
JobsQueued = QLen(p)
QLen(p) = QLen(p) + JobsRecv
If (distribution towards the root processor)
TotalJQ = P x (JobsQueued + [ JobsRecv / (d — Stage(p) +1) )
Exload = | QLen(p) /2 |
Else TotalJQ = P x (JobsQueued + [ JobsRecv / (2 (Stage(®)+1) _1)7)
ExLoad = QLen(p) — SysLL
Call UpdateLoad(TotallQ)
If (ExLoad > 0)
Call Distribute to route ExLoad jobs to next SBN stage
End While

Return

Procedure Balance
If (Stage(p) == 0) Return
If (Stage(p) == d)
TotalJQ = P x QLen(p)
Call UpdateLoad(TotallQ)
Route the balancing message to successors
Return

Procedure Distribute
If (Stage(p) == 0) Return
If (Stage(p) == d)
TotalJQ = P x (SysLL + [ QLen(p) — SysLL/ P )
Call UpdateLoad(TotallQ)
ExLoad = QLen(p) — SysLL
QLen(p) = QLen(p) — ExLoad
Route ExLoad jobs with the distribution message to next SBN stage
Return

Figure 8. Heuristic Variant pseudo code.
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Job distribution is also accomplished differently in this Heuristic Variant. Suppose
QLen(p) > MaxTh, which implies a job distribution is necessary. A new value of SysLL is
estimated as:

SysLL = SysLL + [(QLen(p) — SysLL) / P ].

Intuitively, processor p tries to distribute the excess load among all the processors. Each
processor r receiving the distribution message adjusts its SysLL value and distributes
excess jobs. The jobs that are received (JobsRecv) are distributed evenly among r and
all others in the remaining SBN stages. This is reflected in the formulae shown in the
GetDistribute procedure in figure 8. Note that SysLL is updated based on QLen(r) and not
the original value of SysLL. This approach proved to be more effective in the experiments
that were performed.

For example, consider an SBN(3) that has a processor p with SysLL= 7, MaxTh= 15,
and QLen(p) = 24. The newly-computed SysLL value is 7 + [(24 — 7)/8] = 10. The
number of jobs that will be distributed to the successor (only one successor at this stage)
is 24 — 10 = 14. Suppose that the successor r has SysLL= 9, and QLen(q) = 6. After
receiving 14 jobs, it has SysLL= 6 + [14/7] = 8. Thus, 20 — 8 = 12 excess jobs will be
distributed to the next stage.

A significant advantage of the Heuristic Variant is that the balancing messages do
not have to be gathered in order to calculate SysLL. This reduces the interdependencies
associated with the communication and allows fault tolerance. If a particular processor
fails, load balancing can still be accomplished with the help of the remaining processors.

An additional improvement for the Basic and Heuristic Variant of the load balanc-
ing algorithms can be obtained by using multiple communication patterns in the SBN.
Each time a message is initiated, one of the SBN patterns is randomly chosen. The

experiments make use of the two communication patterns mentioned in section 3.2.2 for
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computing predecessors and successors. Each of the balancing and distribution messages
includes the source processor, the pattern used, and the stage to which the message is
being routed. Since all processors have the SBN template associated with messages orig-

inating from processor 0, the required SBN communication pattern can be determined.

3.3.4 SBN message passing analysis

In a multicomputer of P processors, the distribution of jobs among processors
can be modeled using a Poisson distribution. Specifically, the probability of a processor
having j jobs is given by e’}—;,, where A is the mean arrival rate. If SysLL = k, then by
definition, the average number of jobs assigned to a processor is k. Hence, the probability
that a processor has j jobs is e’,ﬁ—;, Using this simple model, useful probabilities can be
easily calculated. For example, the probability, g3, that a processor in the network has
more than three jobs, is g3 = 1— eik(l +k+ %2 + %) The probability that all P processors
have more than three jobs is (g3)”. Now, (g3)” > 0.9 if £ > 5, and is almost unity if
k > 15. This implies that the need for load balancing activity rapidly decreases as SysLL
increases. Therefore, it makes sense to increase MaxTh exponentially as SysLL increases.

To analyze the Heuristic Variant, let us compute the expected number of jobs,
EJobs, that are returned to the processor that initiates the SBN load balancing algorithm.
Let us also compute the expected number of processors, EProcs, that will be visited
during a balancing operation. In this way, it can be determined whether sufficient jobs
are returned and if message traffic is reduced by utilizing the Heuristic Variant. In this
section, SBN message passing is modeled mathematically. For this purpose, let us define

the following four probability vectors:

) ® =< ¢g, ¢1,---, 0, >, where ¢; is the probability that a processor has i jobs

queued for a given value of SysLL.
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° Dyop =< 0,0,++,0, Dstop, Pstop+1,* * +» ¢n > defines the likelihood that balancing
will stop at a given processor. Here, stop is the number of jobs queued at a processor
that will prevent the SBN Heuristic Variant from forwarding a balancing message

to the next stage.

° D ontinue =< Po, G1, -+, Pstop—1, 0, - - -, 0 > defines the likelihood that balancing mes-

sages will be sent to successor processors.

) C (V) is a probability vector computed by applying the function C to the probability
vector V, and indicates the number of jobs distributed to a processor’s predecessor.
Here, V is the vector defining the probabilities of jobs queued at a processor after

receiving distribution messages from its successors.

Proposition 1 IfV; =< vig, 011, -+, 01 > and Vo =< vgg, Va1, -+ +, Vo, > are probability
vectors, then V1 Q Vo =< vy, V1, , Umin >, where @ s a product operation such that
Vi = Y j+k=iV1j X Vo, 1S also a probability vector.

Proof. Consider the product (327 v1;) (372 ve;). Since V1 and V; are probability
vectors, Y i (V1 = Z;-”:O vg; = 1 and the above product is unity. This product can also
be written as vyg(veg + Vo1 + -« + Vo) + + + - + V1, (Voo + Vo1 + « - - + Vo, ). These terms can
be reorganized as (vigvg) + (V191 + V11V20) + (V10V22 + V11091 + V12090) + - - -, ) Which are
the vector entries of Vi @ V5. Since it was shown that this sum is unity, V; @ V5 is also

a probability vector. O

As an example, let V; =< 0.5,0.3,0.2 > and V5, =< 0.4,0.3,0.3 >. Then,
V1 Q) V2 =< 0.20,0.15 + 0.12,0.15 + 0.09 + 0.08,0.09 + 0.06,0.06 >=< 0.20,0.27,0.32,0.15,0.06 > .

Clearly, the sum of all the vector entries of V; @ V5 is equal to unity.
Using the definitions just described, define Ry =< jro, jr1,- - -, Jkn > as a proba-

bility vector, where ji; is the probability that ¢ jobs from an SBN processor at stage k
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are returned to a predecessor at SBN stage £ + 1 during a balancing operation. R4
then indicates the jobs returned to the root processor that initiated the load balancing

operation, and can be computed by the following recursive formula:

Stage 0: Ry = C(®). Note that the function C reflects the SBN job return policy

as charted in figures 9 and 10.

Stage 1 < k<d: Rk = C((Dstop + cI)comtinue ® kal ® kal)-

Intuitively, the calculation function is used to add the jobs queued locally to the
jobs that are expected to be returned from the two successor processors. Once Ry 1 =<
To,T1," " *Tn > is computed, EJobs = 377 ;j X r; can be calculated.

To compute EProcs, let ¢. be the probability that a given processor has greater
than or equal to stop number of jobs queued, where ¢ = @g0p + Pstop1 + -+ + @y in the
®,40p probability vector. The probability that a balancing message will reach a processor
at stage k in the SBN is therefore p?~*~!  since the message must pass through d — k — 1

predecessors. By definition, for a given SBN communication pattern, the number of

2¢=k=1_ Therefore, EProcs = Y 4_1 ¢d=*=1 x 24=%=1_ For example,

processors at stage k is
if d =5 and ¢. = 0.4, the expected number of the thirty two processors visited during a
balancing operation is 3.3616.

With this model established, EJobs and EProcs can be computed for various values
of the system load level (SysLL), the dimension d of the SBN, and the value of stop.
Assuming a Poisson job arrival rate, the probability vector ® is easily established. The
calculation function, C(V'), is implemented by utilizing the job return policy of the
Heuristic Variant.

Figures 9 and 10 utilize the mathematical model just described to depict EJobs

and EProcs, when P = 32, for various SysLL values. In these tables and graphs, several
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prospective policies are analyzed for a processor to terminate load balancing. For exam-
ple, when a processor p executes the Basic SBN algorithm after receiving a balancing
message, this message will be forwarded to the next SBN stage unless p is at stage 0. An
alternate policy is for p to terminate balancing if QLen(p) > 2 when SysLL is low (say,
< 2) or when QLen(p) > 4 for other SysLL values. This policy attempts to return at least
one job under light loads and at least two jobs under heavier loads. Other possible poli-
cies are for p to stop balancing when QLen(p) is sufficiently above SysLL. These policies
are depicted up to QLen(p) = SysLL+4. In the figures, SysLL is varied from a value of
one to fifteen.

Figure 10 shows that if the Heuristic Variant is used with stop = SysLL+1, EProcs
is significantly less than with the Basic SBN algorithm. For example, if P = 32 and
SysLL = 4, only 8.3 processors are visited, on average, using the Heuristic Variant,
whereas all 31 processors are required for the Basic algorithm. Furthermore, when the
Heuristic Variant is used, figure 9 indicates that EJobs= 4.2 (compared to 8.8 with the
Basic algorithm), a value much closer to the SysLL value of 4. Therefore, a better load
balance is achieved with significantly reduced balancing traffic.

Figure 9 also gives an indication as to what stop value is optimal in relation to
SysLL. After a successful load balancing operation, QLen(p) will approximate the SysLL
value for all processors. By the definition of SBN load balancing algorithms, the processor
that initiates load balancing has less than MinTh jobs queued for processing. EJobs will
then be optimal when it approximates the SysLL value. Figure 9 shows that this objective
is achieved when stop =SysLL+1. This is intuitively correct because it implies that a
processor will forward a load balancing message to the next SBN stage until an overloaded

processor is encountered.
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Figure 9. Expected number of jobs returned (EJobs) for P = 32.
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Expected number of processors visited (EProcs) for P = 32.

39



40

3.4 Experimental study

This section describes the simulation environment and the synthetic test cases
that were used to compare the proposed SBN-based load balancing algorithms with
several existing methods. The performance metrics used for comparison are explained

and comprehensive results presented from simulation experiments.

3.4.1 Simulation environment

All the load balancing algorithms were implemented using MPI and tested with
synthetically-generated workloads on a 32-processor SGI Origin2000 located at NASA
Ames Research Center. The simulation program spawns the appropriate number of child
processes and creates the desired SBN topology. A list of all processor labels and an
initial distribution of jobs are then routed through the network.

In addition to the initial load, each processor dynamically generates additional
jobs to be processed. Specifically, ten job creation cycles are run where the number
of jobs generated at each processor during a cycle follows a Poisson distribution. By
randomly picking different values of A (the mean arrival rate,) varying numbers of jobs
are created. Therefore, both heavy and light system load conditions are dynamically
simulated. Jobs are processed by “spinning” for the designated amount of time. The
simulation terminates when all jobs are processed. Note that as the number of processors
increases, the workload also increases by the same factor. It is thus expected that the
completion time should remain relatively constant if the algorithm scales efficiently.

The experiments compare the performance of the SBN-based load balancing al-
gorithms to six other commonly-used techniques, namely Random, Gradient, Receiver
Initiated, Sender Initiated, Adaptive Contracting, and Tree Walking, as summarized in
section 3.1. The Basic SBN algorithm, its Heuristic Variant, and the Tree Walking al-

gorithm utilize the SBN topology in their implementation. The SBN topology is very
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close to the binary tree structure required by Tree Walking and provides a direct and
fair comparison. The other algorithms and the Hypercube Variant of the SBN algorithm
are implemented utilizing a hypercube topology. This demonstrates the ability to embed
the SBN approach into another topology and provides a fair comparison between the
Hypercube Variant and the other balancing algorithms. By comparing the Hypercube
Variant and Basic SBN algorithm, it can be determined whether a change in topology
causes any significant performance differences. Finally, the same experiments are also
performed without any load balancing, in order to have a reference point. All ten algo-
rithms (six existing load balancing schemes, three proposed schemes, and a no-balancing
scheme) are implemented using the same hardware and software environment.

The results obtained from these experiments are shown in figures 11, 12, and 13.
They were compiled from repeating the simulations ten times and averaging the results.
Experiments were limited to ten runs by system account limitations. The loads are
characterized in the descriptions that follow:
Heavy System Load (see figure 11)

An initial load of ten jobs per processor is queued during the first cycle of execution.
Each execution cycle, including the first, is 1.0 sec in duration. At the start of the
remaining nine cycles, an average of 19.41 additional jobs are generated in accordance
with the formula QOO(E;\—ij!), where the values of A and j are randomly varied between
one and ten. The constant, two hundred, is large enough to ensure that the time required
to process the created jobs is approximately double the 10.0 secs. of execution (1.0 sec
for each execution cycle,) thereby guaranteeing an overloaded condition. The duration
of all jobs average 0.1 sec, with the longest jobs requiring 0.2 sec. The entire simulation
requires 10.0 secs plus the time needed to empty out all of the job queues. Optimal

balancing for this experiment requires an average of 1.0 sec to process the initial load
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plus 1.941 x 9 secs for processing the additional load cycles, amounting to 18.469 secs.
The entire simulation is repeated ten times, and the results are averaged.
Heavy to Light System Load (see figure 12)

An initial load of fifty jobs per processor is queued to a small subset (log P) of
processors during the first execution cycle. This ensures the initial heavy load condition.
Each execution cycle, including the first, is 4.0 secs in duration. At the start of the
remaining nine cycles, an average of 12.94 additional jobs are generated in accordance
with the formula 260(6;\—;3!), where the values of A\ and j are randomly varied between
one and twenty. The constant, 260, is chosen so that a light load of jobs will be generated
at each execution cycle. The duration of all jobs average 0.2 sec, with the longest jobs
requiring 0.4 sec. The entire simulation requires 40.0 secs (4.0 secs for each execution
cycle,) if load balancing is effective. Note that 10.0 secs is required to process the initial
load plus 12.96 x 9 x 0.2 secs for processing the remaining cycles. This totals to 33.328
secs, leaving an average of 0.66 sec of idle time per cycle. As with the other experiments,
this entire experiment is repeated ten times, and the results are averaged.

Light System Load (see figure 13)

This experiment is similar to the Heavy to Light experiment except that the initial
load of jobs is very light. Specifically, an initial load of one job per processor is queued to
a small subset (log P) of processors during the first cycle of execution. Therefore, a light
system load exists throughout the duration of this experiment. The entire simulation
requires 40.0 secs (4.0 secs for each execution cycle,) if load balancing is effective. Note
that 0.2 sec is required to process the initial load plus 12.96 x 9 x 0.2 secs to process the
remaining cycles. This totals to 23.528 secs, leaving an average of 1.6472 secs of idle time
per cycle. As with the other simulations, this entire experiment is repeated ten times,

and the results are averaged.
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3.4.2 Performance metrics

The data and bar charts included in figures 11, 12, 13 measure the comparative
performance of the various load balancing algorithms on an SGI Origin2000. The X-axis
of the bar charts show the number of processors used. The Y-axis tracks the following

variables:

Message Traffic Comparison:
Total number of balancing and distribution messages that were sent during the

simulation.

Total Jobs Transferred:
Total number of jobs that were transferred from one processor to another. Note
that if a job is transferred multiple times before execution, each transfer is indi-
vidually counted. However, if data needs to be transferred when a job executes
on a processor other than the one at which it originated, the data are transferred
only once. Note that it may have been appropriate to count multiple job transfers
only once since the actual data transfer incurs almost all of the overhead. How-
ever, the Total Jobs Transferred metric as defined can be useful in that it can give
an indication of how flexible an algorithm is in its ability to adapt to a quickly
changing dynamic load environment. For example, load balancing algorithms that
do not allow multiple transfers would be the least flexible and expected to generate
the smallest Total Jobs Transferred values. Similarly, high Total Jobs Transferred

values generated by a load balancing algorithm are not necessarily undesirable.

Maximum Variance in Idle Time:
Difference in processing time (in secs) between the busiest processor and the least

busy processor.
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Total Time to Complete:

Total amount of elapsed time (in secs) before all jobs are fully processed.

3.4.3 Summary of results

As mentioned in section 3.4.1, the Basic SBN-based load balancing algorithm (in
short, SBN), its Heuristic Variant (SBZ), and the Tree Walking algorithm (TWA) were
implemented using the SBN topology, while the other load balancing algorithms were
implemented assuming a hypercube topology. Recall that the Hypercube Variant of
SBN (CUBE) utilizes the Basic SBN algorithm adapted for the hypercube. Analyzing
CUBE, it can be determined whether performance improvements are due to the proposed
load balancing algorithms or due to the SBN topology.

The following paragraphs analyze each of the four metrics (Maximum Variance
in Idle Time, Total Time to Complete, Message Traffic Comparison, and Total Jobs
Transferred) measured during the experiments.

With respect to the metric Maximum Variance in Idle Time, the no-balancing
algorithm (NOBAL) performs the worst by far, as expected. The Random (RAND) algo-
rithm, although reducing the idle time, is much less effective than the other algorithms.
The Sender Initiated (SEND) and Adaptive Contracting (ACWN) algorithms have sim-
ilar performance, which is somewhat better than RAND. Note that RAND, ACWN, and
SEND do not allow multiple job migrations. This feature prevents these algorithms from
efficiently adapting to a dynamically-changing job execution environment. TWA shows a
large imbalance under light system loads (see figure 13) that could stem from its lack of
using a minimum processor workload threshold.

Considering the Total Time to Complete as the metric, recall that the amount
of work increases proportionately with the number of processors. For example, twice

as much processing is required for P = 8 than for P = 4. Under light loads (see



P nobal rand grad recv send acwn twa shn cube shz P nobal rand grad recv send acwn twa shn cube shz
2 0 20 63 25 34 99 18 12 14 8 2 0 183 33 12 155 109 31 42 60 65
4 0 71 586 287 130 381 102 85 75 43 4 0 472 195 124 459 325 142 237 189 294
8 0 207 2,426 1,005 398 1,164 364 457 227 138 8 0 1,195 505 395 1,049 1,298 495 983 656 790
16 0 515 10,050 2,279 1,074 2,936 1,443 1,152 703 460 16 0 2,282 1,709 818 2,157 4,122 1,298 2,649 1,874 2,169
32 0 1,202 33,065 5,923 2,688 7,228 5,390 3,230 2,183 1,390 32 0 4,731 4,939 2,041 4,720 12,068 3,272 6,118 6,527 6,246
average 0 403 9,238 1,904 865 2,362 1,463 987 640 408 average 0 1,773 1,476 678 1,708 3,584 1,048 2,006 1,861 1,913
Message Traffic Comparison Total Jobs Transferred
35,000 14,000
30,000 12,000 ]
25,000 @ nobal 10,000 —
" Erand
1
g Ograd o
% 20,000 g £ 8,000 —
L bl
E Orecv 5
5] 5]
g B send 2
£ 15,000 S 6,000
E] Dacwn z
z
Btwa
10,000 Osbn 4,000
M cube
5,000 Bsbz 2,000 m
0 P S Jhl‘l— ; 04 ;
16 32 2 4 8 16 32
Processors Processors
P nobal rand grad recv send acwn twa shn cube shz P nobal rand grad recv send acwn twa shn cube shz
2 8.13 151 0.36 3.00 0.84 0.25 0.14 0.10 0.10 0.08 2 23.39 20.42 16.09 21.22 19.24 19.37 19.67 18.44 17.93 20.04
4 11.76 4.87 1.42 1.49 2.03 0.44 0.20 0.70 0.19 0.25 4 24.61 20.58 18.03 19.94 2111 19.38 19.38 20.00 18.57 20.81
8 23.15 8.79 0.81 244 2.80 0.77 0.30 0.33 0.29 137 8 30.03 25.68 18.68 19.17 20.96 20.40 19.36 19.16 18.04 18.96
16 19.53 10.41 0.90 177 3.16 121 0.41 0.47 0.40 1.48 16 30.95 23.92 18.76 18.95 20.41 19.74 19.21 18.64 19.40 20.16
32 29.19 11.47 123 1.82 3.78 3.06 0.52 0.75 0.54 4.83 32 34.42 24.10 20.11 19.78 21.26 21.19 19.60 18.33 19.80 19.93
average 18.35 7.41 0.94 210 2.52 115 031 0.47 0.30 1.60 average 28.68 22.94 18.33 19.81 20.60 20.02 19.44 18.91 18.75 19.98
Maximum Variance in Idle Time Total Time to Complete
30.00 35.00
30.00
25.00
25.00
20.00
5 .
8 % 20.00 1
@ 3
c @
S 1500 £
8 :
s = 15.00
&
>
10.00
10.00
5.00
5.00
0.00 0.00 -+
2 16 32 2 4 8 16 32
Processors Processors

Figure 11.

Performance under

heavy system load.



P nobal rand grad recv send acwn twa shn cube shz P nobal rand grad recv send acwn twa shn cube shz
2 0 14 139 274 33 48 21 22 31 16 2 0 167 7 76 146 100 87 110 180 99
4 0 45 815 848 163 178 121 137 90 95 4 0 438 219 166 373 385 333 385 372 392
8 0 147 4,095 1,863 447 534 538 519 495 247 8 0 1,004 810 442 976 1,329 956 1,334 1,625 1,272
16 0 351 16,601 10,537 1,318 1,367 1,730 1,648 1,326 729 16 0 2,136 2,520 1,863 1,930 4,085 3,231 4,179 5,399 3,500
32 0 834 58,155 26,821 3,428 3,216 7,375 5,185 3,824 2,128 32 0 4,574 6,683 5,320 4,077 10,933 8,043 15271 14,278 9,863
average 0 278 15,961 8,069 1,078 1,069 1,957 1,502 1,153 643 average 0 1,664 2,062 1,573 1,500 3,366 2,530 4,256 4,371 3,025
Message Traffic Comparison Total Jobs Transferred
60,000 16,000
14,000
50,000
Enobal
Wrand 12,000
40,000 Bgrad
o Orecv 10,000
8 a
& 2
2 Wsend S
3 s
= 30,000 +— m@acwn o 8,000
° 2
] Eiwa 5
£ z
2 Dsbn 6,000
20,000 +—
Mcube
Esbz 4,000
10,000
2,000
2 4 8 16 32 2 4 8 16 32
Processors Processors

P nobal rand grad recv send acwn twa shn cube shz P nobal rand grad recv send acwn twa shn cube shz
2 11555 2.96 221 0.30 2.29 0.58 1.47 0.25 0.38 0.48 2 27628 41.02 41.21 40.86 42.15 40.72 43.38 43.20 40.02 39.90
4 20023 1251 119 1.65 247 244 151 1.16 0.71 0.89 4 32978 42.15 40.45 41.39 40.01 39.95 39.97 40.35 40.94 39.90
8 304.77 21.41 2.06 1.34 3.51 265 241 121 1.07 1.03 8 37173 46.20 40.17 41.11 40.72 40.71 39.97 40.22 40.19 40.00
16 347.08 32.62 2.84 1.82 3.87 5.41 3.24 1.63 1.42 110 16 393.45 52.00 39.91 39.96 40.09 40.04 39.94 40.08 39.98 39.92
32 481.26 42.38 2.68 226 10.11 10.46 3.21 226 141 112 32 494.20 60.41 39.99 40.09 42.14 40.75 40.09 39.93 39.98 39.91

average 289.78 22.38 2.20 1.47 4.45 431 2.37 1.30 1.00 0.92 average 373.09 48.36 40.35 40.68 41.02 40.43 40.67 40.76 40.22 39.93

Maximum Variance in Idle Time Total Time to Complete
500.00 500.00
450.00 450.00
400.00 400.00
350.00 350.00
@ 300.00 300.00
S ~
b ?
g 25000 £ 250.00
I =
P
£ £
S 200.00 = 200.00 1
150.00 150.00 1
100.00 100.00 4
50.00 50.00 4
0.00 0.00 +
2 4 8 16 32 2 4 8 16 32
Processors Processors

Figure 12. Performance when transitioning from heavy to light system load.
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Figure 13. Performance under light system load.
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figure 13,) only NOBAL and TWA fail to complete within the optimal amount of time
(40.0 secs.) This is consistent with the results just discussed where both approaches
show a large variance in processor idle time. Similarly, under the heavy to light load
test (see figure 12), most of the algorithms finish at near-optimal times (approximately
40.0 secs). Here, only NOBAL and RAND could not process the job queues within the
expected time. If the average values are observed from the chart in figure 11 for the Total
Time to Complete, the best average results for the heavy system load test were recorded
by SBN, CUBE, and the Gradient (GRAD) algorithms.

Next consider the Message Traffic Comparison metric. As expected, GRAD gen-
erates, by far, the largest amount of message traffic. The Receiver Initiated algo-
rithm (RECV) generates a large number of messages because of its tendency to become
unstable under light system loads. Idle processors can flood the system with job request
messages in situations where their neighbors do not have excess jobs to return. To alle-
viate this condition, a 0.1 sec delay is introduced between job requests. Longer delays
tend to reduce the load balancing effectiveness of RECV under light loads. As expected,
SBZ generates less message traffic than the other SBN variants. Likewise, all SBN-based
algorithms incur less message passing than TWA. In general, the algorithms that do the
worst in terms of load balancing require little or no message communication. For ex-
ample, NOBAL incurs no message communication, proving that a degree of balancing
messages is necessary to balance a system load.

The last metric to consider is Total Jobs Transferred. During the heavy system
load test (see figure 11,) the Total Jobs Transferred is significantly less than in the other
experiments (see figures 12 and 13). This is due to the fact that during heavy loads, most
processors are busy and not seeking additional jobs to process. Under the light system

load test (see figure 13,) the situation changes. Here, the SBN-based algorithms generate
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the largest values because of their tendency to pass jobs through more processors to
satisfy those with low loads. It is important to note that the data associated with jobs
need to be transferred only once, just before a job is about to execute. Note also that the
SBN algorithms utilize bulk transfers in sending distribution messages to relocate jobs.
These characteristics reduce the negative effects of message latency and minimize the
additional overhead that is incurred. Two of the algorithms (RANDOM and SEND) that
only allow one job transfer before execution have the smallest Total Jobs Transferred
values, as would be expected. However, an interesting result is that ACWN, which also
does not allow jobs to be rerouted more than once, has higher Total Jobs Transferred
than the other algorithms. This is due to ACWN'’s characteristic of doing more work to
initially balance the load when the jobs are generated. In fact, during the heavy system
load test (see figure 11,) Total Jobs Transferred for ACWN is among the highest.

To evaluate the overall performance of the SBN-based algorithms as compared to
the other existing approaches, first note that the performance of CUBE is very similar to
that of SBN. This indicates that the comparisons are fair even though the topology of
SBN is different from that of the other algorithms. The performance similarity between
CUBE and SBN is not surprising since both topologies have a depth of log P and use the
same basic balancing approach.

To continue the overall performance evaluation, let us consider the heavy system
load (see figure 11) experiment. In this test, Total Time to Complete is the most im-
portant metric. Clearly, NOBAL and RAND are the worst performers, and are hence
non-competitive. Looking at the average performance numbers for the experiment, it is
found that the SEND, ACWN, and SBZ strategies are worse than the average performance
of the SBN and CUBE algorithms by 6% to 10%.

Next consider the experimental results under the transition from heavy to light

system load (see figure 12) and the light system load (see figure 13) scenarios for the
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remaining five algorithms (GRAD, RECV, TWA, SBN, and CUBE.) In these tests, Message
Traffic Comparison is the most important metric since it is expected that the completion
times will be near-optimal for all reasonable load balancing approaches. Figures 12 and 13
show that GRAD and RECV have significantly greater message traffic than TWA and the
SBN-based algorithms.

In comparing TWA to the SBN algorithms, it is also desirable to determine how
much load balancing overhead is incurred by TWA. This is important because TWA
suspends application processing during balancing. The results show that TWA spends
between 3.23% and 4.86% of the execution time in balancing a network of 32 processors.
With a network of 16 processors, the overhead varies between 0.73% and 1.08%. Based
on the superlinear increase in the fraction of time spent by TWA in balancing the load,
the overhead could potentially become intolerable for large networks of processors. By
contrast, SBN hides all of the load balancing time since processing is never suspended.

Based on the forgoing analysis that compares the SBN-based load algorithms to
other balancing schemes, it was shown that the SBN approach is an effective load bal-
ancing alternative and compares favorably. Intuitively, the SBN approach is effective
because global load information is obtained from all processors to balance the system
load. Most of the existing load balancing algorithms work only locally with processors
interacting with their immediate neighbors. Therefore, the load information is likely to
be less accurate. Even though the SBN approach is global, the load balancing overhead
is acceptable because the depth of the SBN is log P, where P is the number of avail-
able processors. The fact that SBN allows processing to continue during load balancing
hides communication and data distribution costs because application processing is not

interrupted.
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3.5 Summary

In this chapter, three effective load balancing algorithms were proposed (Basic, Hy-
percube Variant, and Heuristic Variant) based on a topology-independent logical commu-
nication pattern among processors, called Symmetric Broadcast Networks (SBN). This
approach to load balancing has been shown to compare favorably to several other schemes.
The metrics that measure the Maximum Variance in Idle Time and Total Time to Com-
plete, demonstrate that all three proposed algorithms are effective in balancing the system
load while minimizing the idle time. The Message Traffic Comparison metric shows that
use of the Heuristic Variant reduces overhead associated with load balancing traffic when

compared to the two other SBN-based algorithms.



CHAPTER 4
MESH ADAPTATION WITH SBN ALGORITHMS

The ability to dynamically adapt an unstructured grid (or mesh) is a powerful tool
for solving computational problems with evolving physical features; however, an efficient
parallel implementation is rather difficult, particularly from the viewpoint of portability
on various multiprocessor platforms.

Numerical solution schemes for problems in computational science and engineer-
ing are usually performed on a mesh of vertices and edges. These applications can be
modeled in the load balancing framework as a graph of jobs where adjacent jobs need to
communicate in order to complete their tasks. The traditional approach to such problems
is to find a near-optimal minimal cut that partitions the graph among the processors in a
network while balancing the individual processor workloads. For applications that require
dynamic mesh adaptation, the load balancing procedure has to be invoked whenever the
system load becomes unbalanced. Load balancing involves both partitioning the compu-
tational mesh and mapping the resulting partitions to the processors. Mapping requires
data to be redistributed, that is, moved from one processor to another as determined by
the partitioner. An example of this semi-dynamic approach is the PLUM [60] framework
which provides an automatic portable (i.e., architecture-independent) environment for
performing adaptive numerical computations in a message-passing environment. PLUM
applies an efficient algorithm to the output mapping of a partitioner to minimize the
reassignment overhead. Any general-purpose partitioner can be used by PLUM.

The disadvantage of the semi-dynamic approach is that application processing is

temporarily suspended while the load is balanced. In contrast, dynamic load balancers
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such as those that are SBN-based, allow application processing to continue while load bal-
ancing takes place. This feature presents opportunities for latency tolerance techniques
that will allow processing and communication/remapping costs to be overlapped. These
advantages present opportunities for increased efficiency and reduced overall runtime
requirements.

The SBN approach as detailed in chapter 3 is based on defining a robust com-
munication pattern (logical or physical) among processors, called Symmetric Broadcast
Networks. The experiments presented in section 3.4 with synthetic loads [18] have
demonstrated that an SBN-based load balancing solution achieves excellent performance
when compared to other popular general purpose balancing techniques such as Ran-
dom, Gradient, Receiver Initiated, Sender Initiated, and Adaptive Contracting. The
new application-based SBN load balancer is modified in this chapter to provide a global
view of system loads across processors and demonstrate that a dynamic load balancer
can be a viable choice to solve adaptive unstructured mesh applications. This adaptive,
and decentralized scheme can be ported to any topological architecture through efficient
embedding techniques. Experiments on an IBM SP2 and an SGI Origin2000 show that
the SBN-based balancer achieves superb load balance with minimal extra overhead. Ex-
perimental results presented in this chapter, however, were obtained from runs performed

on an IBM SP2.

4.1 Motivations

The success of parallel computing in solving real-life, computation-intensive prob-
lems relies on their efficient mapping and execution on commercially available multipro-
cessor architectures. When the algorithms and data structures corresponding to these
problems are dynamic in nature in the sense that their computational workloads grow

or shrink at runtime, or when they are intrinsically unstructured, mapping them onto
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distributed-memory parallel machines with dynamic load balancing offers considerable
challenges. Dynamic load balancing aims to balance processor workloads at runtime
while attempting to minimize the communication between processors. A problem is
therefore load balanced when processors have nearly equal loads with reduced commu-
nication among themselves. With the proliferation of parallel computing, dynamic load
balancing has become extremely important in several disciplines like scientific comput-
ing, task scheduling, sparse matrix computations, parallel discrete event simulation, and
data mining.

The ability to dynamically adapt an unstructured mesh is a powerful tool for
efficiently solving computational problems with evolving physical features. Standard
fixed-mesh numerical methods can be made more cost-effective by locally refining and
coarsening the mesh to capture these phenomena of interest. Unfortunately, an efficient
parallelization of these adaptive methods is rather difficult, primarily due to the load
imbalance created by the dynamically-changing nonuniform grid. This requires signif-
icant communication at runtime, leading to idle processors and adversely affecting the
total execution time. Nonetheless, it is generally thought that unstructured adaptive-grid
techniques will constitute a significant fraction of future high-performance supercomput-
ing.

As an example, if a full-scale problem in computational fluid dynamics were to be
solved efficiently in parallel, dynamic mesh adaptation would cause load imbalance among
processors. This, in turn, would require large amounts of data movement at runtime. It
is therefore imperative to have an efficient dynamic load balancing mechanism as part
of the solution procedure. However, since the computational mesh will be frequently
adapted for unsteady flows, the runtime load also has to be balanced at each step. In
other words, the dynamic load balancing procedure itself must not pose a major overhead.

Although several dynamic load balancers were proposed for multiprocessor platforms [12,
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15, 18, 42, 51, 75, 76], most of them are inadequate for adaptive unstructured grid
applications because they lack a global view of system loads across processors. Also,
workload migration in these approaches does not take into account the structure of the

adaptive grid. This motivates the work presented in this chapter.

4.2 SBN-based balancer modifications

Execution time, communication cost, and data distribution overhead are all used to
determine how long a given job will take to complete where the time required to execute
a given job is determined by actual load data. Before the modifications to the Basic SBN

algorithm can be described, the following terms need to be defined:
° Wgt? denotes the computational cost to process job j.

° C’ommg;, is the communication cost associated with job j executing on processor p.

Thus, C’omm% is calculated as:

Commi =Y R; X CWgt ;4

i=1

where R; is the fraction of j’s execution time that the data for adjacent job i
resides at a remote processor, « is the number of adjacent jobs, and CWgt ;) is
the communication cost between jobs j and i. Note that job completion requires
CWgt; ;) extra units of time for inter-job communication, if job 7’s data set resides

at a remote processor during the entire run.

° Remapg; is the redistribution cost to copy the data set for job j to processor p from

another processor. If a data set does not need to be migrated, Remapg =0.

The major modifications to the Basic SBN algorithm that take these factors into

account and provide a global view of the adaptive mesh can now be described.
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For each processor p, a weighted system load level, WSysLL, and weighted queue
length, QWgt(p), are used rather than determining the system load based solely on
the queue length (e.g., SysLL and QLen(p) described in chapter 3.) These values
account for the total processing, communication, and data distribution times re-
quired to run the jobs in the system to completion. For the sake of the experiments
that we present in this dissertation, the units of cost associated with execution

time, communication, and data set remapping are assumed to be equal.

The formulae used for maintaining QWgt(p) and WSysLL are:

QWgt(p) = >, (Wgt? + Comm], + Remap}),
j assigned to p

and

P
WSysLL = P > QWgt(i)-‘ :
P i=1

The minimum and maximum thresholds, MinTh and MaxTh respectively, were al-
tered to reflect the time passed when all locally-queued jobs are processed. Also,
in order to prevent excessive job distributions, a limit was placed on the number of

jobs that can be migrated at once.

The SBN-based algorithm utilizes multiple heaps (or priority queues) to decide
which jobs to process and which jobs to migrate. All jobs queued for processing
are stored in a single local “processing heap” and in one of a group of local “mi-
gration heaps.” One local migration heap exists for each processor in the network.
Table 1 illustrates a group of jobs queued for processing at processor zero. The
corresponding processor locations of the data sets for these jobs are also shown.
For example, jobs one and two are on migration heap zero, while jobs three, four,

and five are stored on migration heaps two, three, and one, respectively. Note that
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the migration heap in which a job is placed corresponds to the processor at which
the job’s data set resides. By using this data structure, the SBN algorithm can
quickly favor migration of jobs that are to be moved to the processor where their

data are stored.

Table 1. An example of jobs queued for execution at processor zero

Job # | Data on Processor #
1 0
2 0
3 2
4 3
5 1

For the example in table 1, if a job were to be distributed to processor 3, job 4
would be favored over others since its data set is stored on processor 3. The
balancing algorithm can quickly remove that job from the corresponding migration
heap. Also, the algorithm can efficiently choose jobs to migrate that would incur
a minimum increase in the system distribution and communication costs when the
job is run. The heap order reflects this calculation. Lastly, the processing heap is

used to order jobs to be processed that would be the most expensive to migrate.

Migration messages were added to simulate the movement of data sets from one
processor to another. Using the SBN, a migration message is broadcast when a

job is about to be run and its corresponding data set is not resident. A locate
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message is then broadcast to indicate the new location of the data set. Therefore,

all processors can maintain the processor location of all data sets.

4.3 SBN adaptive mesh experiment

In this chapter, a computational mesh is used that is generated from the simulation
of an acoustics experiment where a one seventh-scale model of a UH-1H helicopter rotor
blade was tested over a range of sub-sonic and transonic hover-tip Mach numbers. The
initial mesh consisted of 13,967 vertices, 60,968 tetrahedral elements, and 78,343 edges.
A cut-out view of the initial tetrahedral mesh is shown in figure 14. In this application,
varying fractions of the domain are targeted for refinement based on an error indicator
calculated directly from the flow solution.

Numerical results and a detailed report of the simulation are available in [9, 73].
A total of three adaptations were performed on this initial mesh using a solution-based
dynamic mesh adaptation procedure [8]. The final mesh contained 137,474 vertices,
765,855 tetrahedra, and 913,412 edges. However, load balancing was always performed
on the initial mesh by modifying the vertex weights of the corresponding dual graph to
model the dynamic mesh adaptation [60].

With the modified SBN algorithms, two sets of experiments are executed using
this dynamic mesh adaptation load data. In the first experiment, the migration of jobs
with long execution times was favored. These results are presented in table 2. In the
second experiment, jobs with short execution times were given the higher priority for
migration. The corresponding results are presented in table 3. Results obtained from
the presented experiments on real data show that the SBN approach is an effective load
balancing technique.

The column headings for tables 2 and 3 are defined as follows:

P: Number of processors.
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Figure 14. Cut-out view of the initial tetrahedral mesh.

Jobs Transferred: Total number of jobs migrated from one processor to another.

Total Messages: Total number of load balancing, distribution, and job-migration

messages that are processed during the experiment.

Processing Percentage: Average percentage of total time each processor spends ex-

ecuting the application (simulated using the Wyt values.)

Communication Percentage: Average percentage of total time each processor spends
in communication routines (simulated using Commg; values.) Note that communi-

cation messages are not actually transmitted during the experiment.

Distribution Percentage: Average percentage of total time each processor spends in
routines that distribute jobs (simulated using Remap; values.) Recall that actual

mesh data sets are not transmitted during the experiment.

Idle Percentage: Average percentage of total time that each processor is idle.
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Table 2. Adaptive mesh experiment favoring long job migration

P Jobs Total Processing | Communication | Distribution | Idle
Transferred | Messages Percent Percent Percent Percent
2 3,567 9,068 92.85 1.93 5.18 0.03
4 6,745 76,555 89.27 4.09 6.49 0.15
8 12,767 426,169 84.22 7.15 8.22 0.41
16 128,780 | 2,759,716 79.56 11.28 8.45 0.70
32 1,261,500 | 15,915,048 76.05 11.51 11.11 1.33
64 | 10,854,794 | 96,184,273 72.25 11.53 13.33 2.89

4.4 Summary

Results show that both experiments balance the load in such a way that minimal
idle time is achieved. Favoring migration of large jobs increases the percentage of time
spent processing jobs and lowers the number of jobs migrated. However, this improvement
requires significantly more message traffic. If these results are extrapolated, minimal
changes in idle time percentage occur as the number of processors are increased. Both
experiments demonstrate that the SBN approach is general enough to be applicable to
this class of problems.

It was also demonstrated that the SBN approach, can be effectively applied to a
dynamic adaptive-mesh application to balance the load among processors while at the
same time minimizing the required communication and distribution costs. The SBN
approach provides a global view of the adaptive mesh, and thereby overcomes many of

the drawbacks associated with traditional dynamic load balancers.



Table 3. Adaptive mesh experiment favoring short job migration
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P Jobs Total Processing | Communication | Distribution | Idle
Transferred | Messages Percent Percent Percent Percent
2 29,298 58,531 82.89 4.05 13.04 | 0.02
4 53,636 80,991 80.15 7.79 12.03 | 0.03
8 84,225 514,549 76.15 12.10 11.63 | 0.12
16 182,036 | 2,074,743 72.80 15.92 10.77 | 0.51
32 913,601 | 7,139,339 70.87 16.62 11.59 | 0.92
64 3,603,769 | 19,858,167 68.32 17.46 12.88 | 1.34




CHAPTER 5
SBN-BASED ALGORITHM COMPARISONS

In this chapter, the SBN-based load balancing algorithms presented in chapter 4
are further modified. The goal of these changes is to make better use of the global view of
system loads across processors and implement metrics that can be used to draw further
conclusions. Results presented (i) demonstrate the portability of the SBN approach with
experiments performed on an IBM SP2 and SGI Origin2000 without any required pro-
gramming modifications; (ii) draw comparisons between the SBN dynamic balancer and
the PLUM semi-dynamic framework; and (iii) combine the dynamic and semi-dynamic
load balancing approaches to determine if additional benefits can be realized. Results
show that both the dynamic and semi-dynamic load balancing approaches achieve superb
load balance with minimal extra overhead. The SBN algorithms reduce the cost of data
set redistribution; however, a higher communication cost during processing is incurred.

In section 5.1, for sake of completeness, the PLUM semi-dynamic framework is pre-
sented for solving computational mesh applications. Background information describing
a dual graph representation used in connection with balancing the load is also discussed.
Next, section 5.2 describes refinements to the SBN mesh balancing algorithms and con-
trasts the approach with PLUM. Section 5.3 describes the computational test case and
introduces established metrics that will be used to draw conclusions. An SBN overhead
analysis is presented in section 5.4 and comparisons with PLUM are made in section 5.5.
Section 5.6 experiments with combining the dynamic and semi-dynamic approaches and
draws some additional conclusions. Finally, section 5.7 mathematically analyzes the SBN

mesh balancing algorithms.
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5.1 PLUM semi-dynamic framework

PLUM is an automatic and portable load balancing environment, specifically cre-
ated to handle adaptive unstructured grid applications. It differs from most other similar
load balancers in that it dynamically balances processor workloads with a global view.
Prior work [7, 60] has successfully demonstrated the viability and verified the effec-
tiveness of PLUM for various test cases involving adaptive unstructured grids. In [20]
its architecture-independent, features are established by successfully performing mesh
adaptations on an IBM SP2, an SGI Origin2000, and a CRAY T3E without any code
modifications. Preliminary versions of these results appear in [60, 61].

A major improvement of the PLUM framework over previous solvers is its efficient
algorithm for minimizing this remapping overhead to guarantee an optimal processor
reassignment. This algorithm is applied to the default output mapping of a parallel
partitioner and significantly reduces the reassignment overhead.

Figure 15 provides an overview of PLUM. After an initial partitioning and mapping
of the unstructured grid, a Solver executes several iterations of the application. A mesh
adaptation procedure is invoked when the computational mesh needs to be refined or
coarsened. Mesh edges are targeted for coarsening or refinement based on an error
indicator computed from the solution. The old mesh is then coarsened where possible,
resulting initially in a smaller grid. This coarsening reduces the overhead associated with
the partitioning step to follow.

Since edges were already marked for refinement, the new mesh can be exactly
predicted before actually performing the refinement step. Program control is passed to
the load balancer at this time. PLUM then gains control to determine if the workload
among the processors has become unbalanced due to the mesh adaptation, and to take
appropriate action. Specifically, if the load has become unbalanced, the adapted mesh

is repartitioned to divide the new mesh into submeshes. PLUM then utilizes an efficient
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heuristic algorithm to minimize the remapping overhead by guaranteeing an optimal
processor reassignment. The data distribution cost is significantly reduced by applying
this heuristic to the output mapping generated by the parallel partitioner. Therefore,
the repartitioned mesh is efficiently distributed among the processors.

If the remapping cost is compensated by the computational gain that would be
achieved with balanced partitions, all necessary data are appropriately redistributed.
Otherwise, the new partitioning is discarded and execution continues without remapping.
After the grid data sets are remapped among the processors, the computational mesh is

refined and the numerical calculation is restarted.

MESH ADAPTOR LOAD BALANCER
INITIALIZATION SH (0] o c
i
Initial Mesh Edge marking
itioni Coarsening
Partitioning
SOLVER
| Refinement |

Figure 15. Overview of the PLUM environment.

The PLUM load balancer features (i) repeated use of the initial (mesh) dual graph
during the course of an adaptive computation, (ii) parallel mesh repartitioning, and
(iii) an efficient remapping and data movement scheme. For the sake of completeness, a

brief overview of these salient features are discussed in subsections 5.1.1, 5.1.2, and 5.1.3.
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5.1.1 Repeated initial dual graph use

Mesh adaptation problems often represent three dimensional space using a grid of
mesh elements such as hexahedra or tetrahedra. As portions of the mesh are coarsened
or refined to capture areas of interest, these elements are typically divided into two, four,
or eight sub-elements. An example of a tetrahedral division into two sub-elements is
shown in figure 16. A series of mesh refinements result in a tree of these elements being
formed. In figure 16, the refinement tree has three elements (the original element and
two children shown on the left.) For load balancing, it is important to construct a graph
structure that can be used for partitioning. It is also important to be able to make use
of the same graph regardless of how many mesh refinements have been executed. This
is accomplished by both PLUM as well as by SBN using the dual graph of the three
dimensional mesh. Namely, each vertex in the dual graph corresponds to an original
mesh element. The vertices of the dual graph have two weights, PWgt, and RWgt,, and
each edge of the graph has one weight, CWgt(, ). These weights respectively represent
the cost (in units) associated with processing, data set relocation, and communication
between mesh elements. On the right side of figure 16, these costs are depicted as P, R,
and C respectively.! PWgt, is the number of leaf elements in the refinement tree (two
in figure 16 after refinement) because the leaf elements correspond to the number of
elements that need to be processed in a particular adaptation step. Similarly, RWgt, is
the total number of elements in the refinement tree (three in figure 16 after refinement)
because all of the elements need to be relocated should a mesh element be moved from
one processor to another. Finally, CWgt(, ) equals the number of common faces between
adjacent elements (two or one in figure 16 after refinement) because that weight represents

the amount of communication required between those adjacent elements. The advantage

!Note that the same vertex is shown both before (left) and after (right) refinement on the right
side of figure 16.
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of this dual graph representation is that the same graph can be used by changing weights
regardless of the number of refinements. The dual graph is also a convenient structure

that can be presented to a partitioner or to SBN to accomplish load balancing operations.

C=1 C=1

Tetrahedral Refinement Tree | Dual Graph Representation

Figure 16. Dual graph mesh representation.

5.1.2 Parallel mesh repartitioning

As the computational mesh is adapted and the processor workloads become unbal-
anced, the mesh needs to be repartitioned. PLUM can use any general-purpose parti-
tioner that balances the computational loads and minimizes the runtime interprocessor
communication. However for PLUM to be viable, the repartitioning must be performed
rapidly, and must not result in large shifts in data that would increase the remapping
and communication overhead.

The overall effectiveness of repartitioning algorithms is determined by how success-
ful they are in load balancing the computations while minimizing the edge-cut, as well
as the cost associated with redistributing the load in order to realize the new partition-
ing. Data redistribution is generally considered the most expensive phase in dynamic
load balancing. The migration of mesh objects requires a number of costs such as the

communication overhead of remote-memory latency, and the computational overhead of
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rebuilding internal and shared data structures. Since global partitioners do not consider
the redistribution cost when generating subdomains, an intelligent algorithm is needed
to map the new partitions onto the processors such that the data migration cost is min-
imized. Diffusive repartitioners explicitly attempt to minimize the data redistribution
cost when generating new subdomains by using the current partition as a starting point.
These strategies are generally successful when there are gradual changes in the load dis-
tribution. However, diffusive schemes may not be well suited for problems which incur
dramatic shifts in the load imbalance between redistributions. Experimental results [7]
indicate that for applications of this kind, the data migration overhead can be reduced
by combining diffusive repartitioners with intelligent remapping algorithms.

Since graph partitioning is an NP-complete problem, research has focused on devel-
oping efficient heuristic algorithms. Many graph partitioning algorithms were developed
over the years, particularly for static grids. Significant progress was made in improving
the partitioning heuristics as well as generating high-quality software. Several excellent
parallel partitioning algorithms are now available [30, 45, 77, 46]. Among the partition-
ing approaches are simulated annealing [49], genetic algorithms [48], clustering [29, 11],
spectral [41] and geometry-based [71, 62].

Multilevel algorithms reduce partitioning times considerably by contracting the
graph, partitioning the coarsened graph, and then refining it to obtain a partition for the
original graph. MeTiS [45] and Jostle [77] are currently the fastest multilevel schemes
that are available. Both MeTiS and Jostle are available in various flavors, and can be
run either as partitioners from scratch or as diffusive repartitioners which modify initial
partitions that are provided.

ParMeTiS [44] is a state-of-the-art global partitioner that makes no assumptions
on how the mesh is initially distributed among the processors. It is a k-way multilevel

algorithm that operates in three phases: (i) in the initial coarsening phase, the original
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mesh, My, is reduced by collapsing adjacent vertices or edges through a series of smaller
and smaller meshes to My, such that M), has a sufficiently small number of vertices; (ii) in
the partitioning phase, the workload is balanced among the processors by using a greedy
graph bisection algorithm; and (iii) in the projection phase, the partitioned mesh Mj
is gradually restored to its original size My, while using a variant of the Kernighan-Lin
refinement algorithm [47] to minimize the edge cut size. This is the strategy that was

chosen for implementation within the PLUM framework.

5.1.3 Data set reassignment

The goal of processor reassignment is to find a mapping between partitions and
processors that minimize the cost of data set redistribution. PLUM utilizes an efficient
heuristic algorithm to reassign vertices among processors. The idea behind the algorithm
is to construct a similarity matrix that enables a near optimal processor mapping to be
efficiently computed that minimizes data movement with respect to either the TotalV,
MaxV, or MaxSR metrics. TotalV minimizes the total volume of data moved among all the
processors; MaxV minimizes the maximum flow of data to or from any single processor,
while MaxSR minimizes the sum of the maximum flow of data to and from any processor.
Key comparisons between SBN and PLUM in this chapter are based on the MaxSR metric.
The PLUM heuristic data set reassignment algorithm is presented in greater detail in [6]

and [60].

5.2 The SBN dynamic approach

When selecting vertices to be processed, the SBN load balancer takes advantage
of the underlying structure of the adaptive grid and defers local execution of boundary
vertices as long as possible because they may be migrated for more efficient execution.
Thus, the next queued vertex is selected such that it minimizes the overall cut size

of the adapted grid. A priority min-queue is maintained for this purpose, where the
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priority of a vertex v in processor p is given by (Comm; + Remapj,)/Wgt’. Therefore,
vertices with no communication and redistribution costs are executed first. Those with
low communication or redistribution overhead relative to their computational weight are
processed next. Conceptually, internal vertices are processed before those on partition
boundaries.

Additionally, the SBN-based balancer, reduces runtime communication and the
cost of moving data sets through efficiently choosing which vertices to reassign when the
processing load is balanced. The differential edge cut, described in the next section, is

used to accomplish these goals.

5.2.1 Differential edge cut

For balancing the system load among processors, an optimal policy for vertex mi-
gration needs to be established. When vertices are being moved, assume that processor p
is about to reassign some of its vertices to another processor g. The SBN load balancer
running on processor p randomly picks a subset of ten vertices from those queued locally.

For each selected vertex v, the differential edge cut ACut, is calculated as follows: 2,

ACut = Remap, — Remap, + Comm, — Comm,,.

If ACut > 0, it is normalized as ACut/Wgt”. The parameters Remap; and Remapy,
will either be zero or equal to the redistribution cost of moving the data for v from p to q.
For example, assume p = 3, ¢ = 6, the data for v reside on p = 1, and its redistribution
cost is 8. In this case, Remap, = Remap; = 8. Similarly, if the data for v resides on
p = 3, then Remap, = 0 but Remap, = 8.

A positive ACut indicates that an increase in communication and redistribution

costs will result if v is migrated from p to ¢q. Therefore, the formula favors migrating

2This deviates from the usual definition of edge cut to account for the dynamic SBN algorithm.
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vertices with the smallest increase in communication cost per unit computational weight.
In contrast, negative ACut values indicate a reduction in communication and redistribu-
tion costs, hence favoring the migration of vertices with the largest absolute reduction in
communication and redistribution costs.

Once ACut is calculated for all the randomly chosen vertices, the vertex MinV
with the smallest value of ACut is chosen for migration. Next, following a breadth-
first search, the SBN balancer selects the vertices adjacent to MinV that are also queued
locally for processing at p. The breadth-first search stops either when no adjacent vertices
are queued for local processing at p, or if a sufficient number of vertices were found
for migration. If more vertices still need to be migrated, another subset of vertices
are randomly chosen and the procedure is repeated. This migration policy strives to
maintain or improve the cut size during the execution of the load balancing algorithm.
In contrast, traditional dynamic load balancing algorithms do not consider cut size and

hence are likely to experience larger cut sizes as execution proceeds.

5.2.2 Data redistribution policy

The redistribution of data is performed in a “lazy” manner. Namely, the data
set for a given vertex v in a processor p is not moved to ¢ until the latter processor
is about to execute v. Furthermore, the data sets of all vertices adjacent to v that are
assigned to g are migrated as well. This policy greatly reduces both the redistribution and
communication costs by avoiding multiple migrations of data sets and having resident all
adjacent vertices that are assigned to processor g while v is being processed.

Data migration is implemented by broadcasting a job migration message when a
vertex is about to be processed and its corresponding data set is not resident on the local
processor. A locate-message is then broadcast to indicate the new location of the data

set. This policy is expected to maximize the number of adjacent vertices that are local
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when a grid point is processed. Hence, by considering the underlying grid structure, the

communication overhead is reduced.

5.2.3 An illustrative example

Figure 17 illustrates the operation of the SBN-based load balancer. It shows a
mesh of sixteen vertices and twenty edges that is partitioned among four processors, P1
through P4. For each vertex, the processing and redistribution costs are represented
as a two-tuple within parentheses. For instance, vertex nine has a processing cost of
one and a redistribution cost of two. Adjacent vertices on the diagram are connected
by edges which are labeled with the associated communication cost. For example, the
communication cost between vertices ten and eleven is three, provided the data sets for
the two vertices reside on different processors when either one is processed. Each of the
four processors are shaded differently in the figure. For example, vertices one, five, six,
and nine are assigned to P3.

Table 4 shows the Wgt", Comm;, and Remapj, values for each vertex v, under
the current vertex-to-processor assignment. Assume that the data for vertex seven are
resident in P2, the data for vertex ten are in P3, while the data for vertices nine, eleven,
and sixteen are resident in P1. The data sets for the remaining vertices are assumed to
be resident in the processor to which the vertices are assigned. Table 4 also shows the
Qwgt(p) values for each processor p, as defined in section 4.2. The weighted system load
WSysLL, for this example is twenty four.

Assuming that MinTh is ten, processor P2 is clearly underloaded. According to
the SBN communication pattern shown in figure 1, P2 sends a load balancing request
to P4. Upon receiving it, P4 determines which vertices to migrate to P2 so that their
loads will be equidistributed. Let us step through the process of selecting the initial

vertex to migrate, using the differential edge cut shown in section 4.2. The ACut values
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(11) (21)

Figure 17. An Illustration of the SBN-based load balancer.

Table 4. Various costs and weighted queue lengths for each vertex v and processor p

processor p P1 P2 P3 P4
vertex v 10 13 14 15| 2 |1 5 6 9|3 4 7 8 11 12 16
Wgt? 21 1 2y1}|1 1 3 1721 4 1 3 1 1
Comm, o 3 5 22,6 3 6 53 0 12 0 3 3 3
Remapy 1 0 o0 o, 0}0 O0OOZ2j]0 0 7 0 1 0 1
Qugt(p) 17 3 28 46

of the vertices currently assigned to P4 are shown in table 5. Vertex seven is found to
be optimal for migration to P2, yielding QWgt(P4) = 23 and QWgt(P2) = 18. The new
value of WSysLL = [86/4] is 22 which reflects an improvement in the total system load.

For this example, additional migration is not necessary.
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Table 5. Differential edge cut for each vertex in P4 if migrated to P2

vertex v 3 4 7 8 11 12 16
Remapp, 1 2 0 3 1 1 1
Remap}, 0 0 7 0 1 0 1
Commip, 6 1 11 6 3 7 1
Commp, 3 0 12 0 3 3 3
ACut 4 3 -8 9 0 5 -2

5.2.4 Differences between SBN and PLUM

The SBN-based load balancer differs from PLUM in several ways:

° Processing is temporarily halted under PLUM while the load is being balanced.
During the suspension, a new partitioning is generated and data are redistributed
among the nodes of the network. The SBN approach, on the other hand, allows
processing to continue while the load is dynamically balanced. This feature also
allows for the possibility of utilizing latency-tolerant techniques to hide the com-

munication and redistribution costs during processing.

° Under PLUM, suspension of processing and subsequent repartitioning does not
guarantee an improvement in the quality of load balance. If it is determined that
the estimated re-mapping cost exceeds the expected computational gain that is
achieved by a load balancing operation, processing continues using the original
grid assignment. This could result in unnecessary idle time. In contrast, the SBN

approach will always result in improved load balance among processors.
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° PLUM redistributes all necessary data to the appropriate nodes immediately be-
fore processing continues. SBN, however, distributes in a “lazy” manner. Data is
migrated to a processor only when it is ready to process the data, thus reducing

redistribution and communication overhead.

° The load balancing under PLUM takes place before the solver phase of the compu-
tation, whereas SBN balances the load during the solver execution. One therefore
cannot directly compare PLUM and SBN, since their relative performance is solver
dependent. However, experiments described in subsection 5.4 makes comparisons

between the two approaches using established metrics.
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Figure 18. Mesh adaptations (initial, one, and five); simulated shock wave.

5.3 Shock wave experiment

The experiments described in section 3.4 utilize synthetically generated loads to

demonstrate the effectiveness of the SBN-based load balancing algorithms as compared
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to other popular balancing algorithms. The experiments in chapter 4 show the adapt-
ability of SBN-based load balancing by applying it to an unstructured mesh adaptation
application which is not normally traditionally solved using a general purpose dynamic
load balancer. In this chapter, a dynamic mesh experiment allows some additional com-
parisons between the SBN approach and the PLUM framework to be drawn and further
demonstrates the effectiveness of the SBN dynamic balancing approach.

The experiment to be analyzed simulates the propagation of a simulated shock wave
within a cylindrical volume. The environment simulated is unsteady and the adapted
region is strongly time-dependent. The propagated shock wave is applied to initial grid
shown at the top of figure 18. The test case is generated by refining all elements within
a cylindrical volume moving left to right across the domain with constant velocity, while
coarsening previously refined elements in its wake. Performance is measured at nine
successive adaptation levels. The size of the computational mesh increased from 50,000

to 1,833,730 over the nine levels of adaptation.

5.3.1 Performance metrics
The following metrics are chosen to evaluate the effectiveness of the SBN-based load
balancer when processing an unsteady adaptive mesh. Recall that v denotes a vertex to

be processed and P is the total number of processors.

° Maximum redistribution cost: The goal is to capture the total cost of packing
and unpacking data, separated by a barrier synchronization. Since a processor can
either be sending or receiving data, the overhead of these two phases are modeled

as a sum of two costs in the following metric:

MaxSR = rggg{{ Z Remap;} + I;lgg{{ Z Remap;}.
v sent from p v received by p
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Since MaxSR pertains to the processor that incurs the maximum redistribution cost,
a reduction in the total data redistribution overhead can be guaranteed by mini-

mizing MaxSR.

° Load imbalance factor: This metric is formulated as:
LoadImb = (mg_;,c Qwgt(p)) / WSysLL.
P

The LoadImb factor should be as close to unity as possible.

° Cut percentage: The runtime interaction between adjacent vertices residing on

different processors is represented as:

Cut% =100 x ) > Commy) > Comm®,

PEP 4 assigned to p e in mesh

where Comm? is the weight of edge e in the adaptive mesh. The Cut value should

be as small as possible.

5.4 SP2 experimental results

In this section, experimental results are described that provide information to ana-
lyze the overhead associated with SBN-based balancing. The SBN-based load balancing
algorithm was first implemented using MPI on the wide-node IBM SP2 located at NASA
Ames Research Center, and tested with data obtained from adaptive calculations of the
time-dependent unsteady simulated shock wave experiment. These results are described
in greater detail in section 5.6 where performance results are charted on table 11. In
addition to achieving excellent load balance, the redistribution cost is significantly re-
duced compared to the results obtained in experiments using the PLUM framework.

However, the edge cut percentages are somewhat higher. The results demonstrate that
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Table 6. Communication overhead of the SBN load balancer

Balancing Balancing Migration Migration
P Messages(bytes) Bandwidth(%) Messages(bytes) Bandwidth(%)
2 342,456 0.00 3,918,912 3.67
4 149,964 0.00 7,939,344 7.44
8 463,340 0.01 25,397,376 23.79
16 581,432 0.02 30,453,888 28.53
32 1,550,292 0.12 38,244,384 35.83

the SBN strategy reduces the redistribution cost at the expense of a somewhat higher
communication cost.

Tables 6, 7 and figures 19, 20 show measurements of overheads due to message
passing and processing according to experiments run on the SP2. Table 6 gives the
number of bytes that were transferred between processors during the load balancing
and the job distribution phases. The number of bytes transferred is also expressed as a
percentage of the available bandwidth. A wide-node SP2 has a message bandwidth of
36 megabytes/second and a message latency of 40 micro seconds. Figure 19 plots this
message passing overhead graphically, and demonstrates that the cost of vertex migration
is significantly greater than the cost of actually balancing the system load. This is not
unexpected. An extrapolation of the results using an exponential curve-fitting program
indicates that normal speedup will not scale past 128 processors. The formula derived
by the curve-fitting program for total overhead, 7,4, due to processing and message

passing is obtained as:

Tyona = 2.4870 x P81 40,1023 x Po8151 1122158776 x P80,
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Figure 19. SBN load balancing related communication overhead.

As expected, much of the overhead is due to the latency associated with transmit-
ting many small messages which is represented by the dominating term, P'°¢1-804l where
P is the total number of processors used. However, since this exponent is less than one,
the overhead is asymptotically sub-linear.

Table 7 shows the fraction of time spent in the SBN load balancer compared to the
execution time required to process the mesh adaptation application. The three columns
correspond to three categories of load balancing activities: (i) the time needed to handle
balance related messages, (ii) the time needed to migrate messages from one processor
to another, and (iii) the time needed to select the next vertex to be processed. Figure 20
shows graphical plots. The results show that processing related to the selection of vertices
is the most expensive phase of the SBN load balancer. However, the total time required

to load balance is still relatively small compared to the time spent processing the mesh.
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Table 7. Percentage overhead of the SBN load balancer

Balancing Migration Vertex

P Activity Activity Selection
2 0.0053 0.0014 0.4530
4 0.0087 0.0069 2.0381
8 0.1745 0.0569 2.8386
16 0.2669 0.0629 0.8845
32 0.7885 0.5407 2.3062

In conclusion, these experimental results complement the results of chapter 4 and
again demonstrate that the proposed SBN-based dynamic load balancer is effective in

processing adaptive grid applications, thus providing a global view across processors.

5.4.1 Origin 2000 Experimental results

In this subsection, the SBN methodology was directly ported from the SP2 to the
Origin2000 machine without any required code modifications (Minor revisions as will be
discussed, were made to refine the approach.) and additional experiments conducted.
These experiments demonstrate the architecture independence of the SBN-based load
balancer.

The plots in figure 21 illustrate the effect upon Cut’%, MaxSR, and LoadImb when
the experiments were run on the Origin2000 as compared with those parameters for SP2.
LoadImb percentages are almost identical with those on SP2. Cut values are consistently

larger on the Origin2000. But MaxSR values are larger on the Origin2000 when P < 16.
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Figure 20. SBN load balancing related processing overhead.

Some of the differences in performance results on these two machines are due to
additional refinements that were implemented prior to running the experiments on the

Origin2000. The refinements are summarized in the following itemization:

e  Qugt(p) was revised to include the cost of migrating the data sets that are assigned
to p but whose corresponding vertices are to be processed elsewhere. For example,
if vertex v is to be processed by processor ¢ but its data set is resident in p, Remapy,
is added to QWgt(p). This refinement more accurately models processor load than
what was reflected in the QWgt(p) definition presented in section 4.2. Note that
this modification increases the anticipated cost of vertex migration. As a result,

the SBN-based balancing algorithm tolerates a greater cut size.

e  The algorithm for distributing jobs was modified somewhat for the Origin2000

experiments. The purpose of this refinement is to guarantee that the processor
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Figure 21. LoadImb, MaxSR, and Cut’ on the SP2 and Origin2000.

initiating load balancing always gets sufficient load to process, thereby reducing
the total number of balancing related messages that need to be processed (the
initial processor receiving a balance request returns half of its job queue to the
calling processor.) A side effect of this refinement is to increase the number of

vertices migrated, especially when the value of P is small.

° Another refinement was made to migrate data sets corresponding to groups of ver-
tices at a time. This allows for fewer total migration messages. In the experiments,
the volume of migration messages were reduced by more than 80% as a result of

this change.

5.5 SBN comparisons to PLUM

Both the PLUM and the SBN-based load balancers were implemented using the
MPI message-passing library. Performance results, averaged over nine levels of adapta-
tion, are presented in table 8. These values were obtained on the Origin2000, and are
platform independent. Both strategies achieve excellent load balance quality (LoadImb;)

however, the SBN-based algorithm significantly reduces the redistribution cost (MaxSR)
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from that obtained with PLUM, more so for the larger numbers of processors. Com-
pared to PLUM, the SBN algorithm also incurs a smaller overhead in terms of the total
communication volume (in MBytes,) which is proportional to the TotalV metric. (Ob-
serve that the total communication volume increases with the number of processors,
while the MaxSR metric decreases.) On the other hand, the MeTiS partitioner used in
PLUM generates dramatically smaller edge cuts (Cut¥,) thereby minimizing the runtime
interprocessor communication. Thus there is a trade-off here: SBN reduces the data
redistribution overhead at the expense of greater runtime communication. This is due to
the lazy approach of data migration used by the SBN-based load balancer, but may be
an acceptable compromise for applications where the data migration cost is dominant.
Table 9 shows the fraction of time spent in the load balancer compared to the total
time to process the mesh adaptation application for both PLUM and SBN. Notice that
the partitioning overhead of PLUM is dramatically less than the balancing cost of SBN.
This is due to the state-of-the-art MeTiS partitioner, which uses the dual graph infor-
mation to efficiently create a new mesh distribution. The SBN balancer, on the other
hand, is dominated by the cost of vertex selection. The algorithm dynamically chooses
the next dual graph vertex to be processed, depending on specific runtime criteria. Thus,
vertex selection is not as efficient as parallel partitioning, since the balancing data are
not available a priori as in the PLUM framework. However, the cost of remapping within
PLUM is significantly more expensive than SBN distribution. During PLUM remap-
ping, useful processing is suspended while the mesh is redistributed and data objects
are appropriately rebuilt. The SBN approach allows processing to continue while the
load is dynamically balanced. This allows the communication overhead of distribution
to be overlapped with the processing of the mesh application, substantially reducing the
data movement cost compared to traditional remapping schemes. Finally, observe that

the Origin2000 is responsible for a smaller overall percentage of remapping/distribution



83

compared to the SP2, for both balancing strategies. This is due to the superior network

performance of the Origin2000.

Table 8. Performance results of the PLUM and SBN-based balancers

LoadImb Cut% MaxSR Comm. Vol.
P| PLUM SBN PLUM SBN PLUM SBN PLUM SBN
2 1.00 1.01 3.29 7.65 157,542 158,085 7.625  3.921
4 1.00 1.00 4.01 12.81 143,227 114,652 14.264  7.250
8 1.01 1.01 5.77 18.33 129,859 65,824 26.092 18.356
16 1.02 1.01 7.81 29.25 103,090 35,389 36.787 27.658
32 1.04 1.02 10.94 36.47 63,270 19,446 41.113 35.268

5.5.1 Advantages of dynamic balancing

The SBN load balancing algorithms are designed to run dynamically without the
need for a separate partitioning process. This is a significant advantage over the exist-
ing approaches taken by most parallel adaptive mesh applications implemented to date.
Those methods must suspend processing when processor loads become imbalanced. Dur-
ing the suspension, mesh vertices are reassigned and the corresponding data sets are
remapped. Another advantage of the SBN approach is that it allows overlapping of the
computational, communication, and redistribution phases which would lead to further
reductions in the overall execution time. Existing methods which separately process the
computational, partitioning, and remapping phases of adaptive mesh applications cannot

achieve this overlap.
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Table 9. Percentage overhead of the PLUM and SBN-based balancers

PLUM SBN
Partitioning Remapping Balancing Distribution

P SP2 02000 SP2 02000 SP2 02000 SP2  (O2000

2 0.13 0.14 1.45 1.11  0.86 0.75  0.04 0.03
4 0.15 0.15  2.56 2.01 1.15 0.99 0.11 0.08
8 0.17 0.18  3.52 283 211 1.48  1.48 0.11

16 0.32 0.34 4.04 3.31  2.75 1.89  1.89 0.16
32 0.45 0.50 4.40 3.67 3.01 252 2.52 0.20

5.6 SBN pre-partitioner

To further test the effectiveness of the SBN approach, a pre-partitioner was im-
plemented which can optionally be run prior to each mesh adaptation phase. Since
state-of-the-art parallel partitioners execute quickly (less than a second for a million ver-
tices on 64 processors,) it would be interesting to determine whether separately running
a front-end partitioner would have significant benefit on the resulting communication
and/or redistribution overhead. Our pre-partitioner computes a P-way partition of the
mesh vertices and then uses the default partition-to-processor assignment as the starting
point for subsequent SBN-based load balancing. This pre-partitioner is non-standard in
the sense that it partitions the mesh based on QWgt(p) values, which take into consider-
ation all three factors of computation, communication, and redistribution. In addition,
the data associated with each mesh vertex are not migrated after the partitioning process
is completed. The actual data movement takes place during mesh adaptation as vertices

are processed with SBN load balancing in effect.
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Since the initial partition-to-processor assignment represents only a starting point,
the partitioning capabilities inherent in the SBN-based balancing algorithm could signif-
icantly alter the processor assignments as the mesh is subsequently processed. These ad-
justments occur dynamically as individual processors become overloaded or underloaded.
Our experiments demonstrate that the SBN pre-partitioner produces lower communica-
tion costs and higher data remapping costs than when the pre-partitioning option is not
used (see tables 10 and 11.) Although the SBN pre-partitioner may be of limited value
for those adaptive mesh applications where remapping costs dominate communication
costs, its algorithm is sketched in the following paragraphs the sake of completeness.

The SBN pre-partitioner is a diffusive algorithm which uses the original mesh as a
starting point and improves balancing by reassigning vertices among processors. It com-
putes a P-way partition such that QWgt(p) is approximately equal for all the processors
and WSysLL is minimized. Since QWgt(p) is the sum of the computational, communication,
and redistribution costs, this is a somewhat stronger requirement than that considered
in some other approaches [41, 45] where the mesh is partitioned to equalize the total
computational cost while minimizing the total number of cut edges. Therefore, if only a
few processors incurred most of the communication overhead, significant idle time could
result during processing.

The pre-partitioner differs from the partitioning capabilities inherent in the SBN
load balancer in that multiple iterations are executed to find an optimal P-way partition.
Here, an iteration is defined as a sequence of vertex reassignments from one processor
to another. During an iteration, each vertex is allowed to be reassigned at most once.
Reassignments are made so that vertices in processor p with QWgt(p) > WSysLL are
assigned to the processor ¢ with the minimum QWgt(gq) value.

Each vertex to be reassigned is adjacent to a random subset of vertices chosen and

belonging to q. First, the ACut value is computed for all adjacent vertices assigned to
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processors other than ¢g. The non-local adjacent vertex MinV, one with the smallest ACut,
is then added to the set of vertices assigned to ¢. In addition, a breadth-first search is
performed on the vertices adjacent to MinV that are not assigned to g but to p where
Qwgt(p) > WSysLL. These vertices are also assigned to q.

At the end of an iteration when all vertices have been considered, the partitioner
computes the load imbalance factor QWgt(r)/WSysLL, for the processor r with the largest
value of QWgt(r). If the load imbalance factor is greater than a specified threshold (1.75
in our experiments,) the Kernighan-Lin refinement procedure [47] is invoked to further
reduce WSysLL.

Initially, the pre-partitioner is set to execute a fixed number of iterations, ItNum.
In our experiments, ItNum = 4 produced the best results. After each iteration, the total
number of iterations is increased by ItNum if a new minimum WSysLL is achieved. The

algorithm terminates when all iterations are completed.

5.6.1 Pre-partitioner experimental results

Table 10 presents the results of processing the adaptive mesh with the SBN load
balancer when running the SBN pre-partitioner between mesh adaptations. Table 11
presents similar results, but the SBN pre-partitioner is not invoked between adaptation
phases. Tables 12 and 13 respectively chart the results achieved using the ParMeTiS and
DMeTiS partitioners within the PLUM environment. Note that tables 12 and 13 do not
show results corresponding to all values of P = 2, 4, 8, 16, and 32. Only those data sets
that were available are included.

The following metrics are referenced in tables 10 and 11:
Pre-Part Cut%: Initial edge cut projection before running the Pre-partitioner.

Pre-Exec Cut%: Mesh edge cut immediately before processing a mesh adaptation.
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Post-Exec Cut%: Actual cut realized after processing a given adaptation level.

Overall, the SBN-based approach achieves excellent load balance whether the pre-
partitioner is active or not. As shown in tables 10 and 11, LoadImb = 1.02 for P = 32.
When P < 8, an ideal load imbalance factor of 1.00 is achieved for most of the adaptation
levels. In contrast, this factor is respectively 1.04 and 1.59 using ParMeTiS and DMeTiS
under the PLUM environment (see tables 12 and 13.)

The MaxSR metric indicates the amount of redistribution cost incurred while pro-
cessing the adaptive mesh. The SBN “lazy” approach to migration of vertex data sets
produces significantly lower values than those achieved by ParMeTiS or DMeTiS under
PLUM. For example, for P = 32, table 11 shows MaxSR = 28,031, which is signifi-
cantly less than the corresponding value in table 12 (MaxSR = 63,270) and in table 13
(MaxSR = 62,542.) Additionally, when the SBN balancer is used with the partitioner,
a higher MaxSR value results when P > 8 than when the partitioner is not active (see
table 11.) This indicates a trade-off of lower redistribution cost for higher cut percentage.
The pre-partitioner will allow an increase in the redistribution cost if it is compensated
by a larger improvement in the communication cost. Comparing Pre-Part Cut’, and
Pre-Exec Cut% from table 10, it can also be concluded that Cut’ degrades as the pre-
partitioner executes. This result is consistent with the observations drawn from the
PLUM experiments.

Table 10 shows an SBN cut percentage that is more than double compared to
those reported by ParMeTiS (21.29% vs. 10.94% for P = 32.) This difference in the cut
percentage is significantly lower when compared to the results obtained with DMeTiS
(21.29% vs. 20.22%.) These results could reflect the effectiveness of the partitioners being
used rather than whether the SBN balancer will always produce higher communication

costs. For example, in table 10, the cut percentage often decreases during execution of
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the SBN balancer. This phenomenon did not occur while experimenting with ParMeTiS
or DMeTiS under PLUM.

Note that the cut percentage is about 1.3 times higher when the SBN pre-
partitioner is not active (see tables 10 and 11.) This implies that it may be useful
to initially partition the mesh to compute a starting point for subsequent SBN load
balancing when high communication cost is a critical factor.

In conclusion, these experimental results demonstrate that the proposed SBN-
based dynamic load balancer has definite advantages over the traditional semi-dynamic
frameworks in achieving a lower cost of data redistribution; but a higher communication
cost. In many mesh applications in which cost of data redistribution dominates the cost
of communication and processing, the SBN balancer would be preferred over a semi-

dynamic balancing approach.

5.7 Complexity analysis

In this subsection, overhead associated with the execution of the SBN-based load
balancer and/or pre-partitioner is analyzed while processing the computational mesh.
Where possible, both analytic formulas and experimental data are presented.

The SBN pre-partitioner computes a P-way partition (where P is the number of
available processors) of the adaptive mesh before each phase of execution. When P = 32,
the partitioning time was measured to be about 120 seconds, which is much higher than
the average processing time (less than one second) required by the ParMeTiS and DMeTiS
partitioners. Note, however, that the SBN pre-partitioner runs sequentially and was not
optimized for peak performance. Furthermore, the SBN pre-partitioner does not use the
multilevel approach used by ParMeTiS and DMeTiS that results in significant speedup.

The overhead due to the SBN-based load balancer has four components: (i) the

choice of the next vertex to be processed; (ii) the selection of the set of vertices to be



Table 10. SBN mesh adaptation results with pre-partitioning

Adaptation Level | Pre-Part Cut% Pre-Exec Cut%  Post-Exec Cut% MaxSR  LoadImb
Cut% Cut% Cut%
P=2 1 0.09 1.76 0.95 9,606 1.00
2 1.21 2.82 1.60 41,926 1.00
3 0.59 3.36 2.60 178,631 1.00
4 3.28 4.00 2.31 118,679 1.00
5 2.94 3.02 2.39 112,437 1.00
6 4.36 3.88 2.93 87,517 1.00
7 2.76 2.53 1.78 75,925 1.00
8 0.51 3.14 2.08 223,160 1.00
9 2.55 2.87 2.18 103,772 1.00
Average 2.03 3.04 2.09 105,739 1.00
P=4 1 2.26 3.67 2.58 6,937 1.00
2 3.37 4.11 3.13 24,382 1.00
3 3.60 6.03 4.96 81,348 1.00
4 5.73 5.51 4.56 85,345 1.00
5 6.23 6.58 4.89 101,070 1.00
6 6.25 6.29 5.12 51,018 1.00
7 5.95 8.22 6.72 145,850 1.00
8 7.45 8.36 6.86 92,430 1.00
9 6.05 9.63 4.99 69,413 1.00
Average 5.21 6.49 4.87 73,088 1.00
P=38 1 6.66 7.16 6.05 6,939 1.01
2 7.60 7.56 6.17 22,833 1.00
3 7.85 8.48 7.33 90,132 1.02
4 7.78 17.35 14.67 139,439 1.00
5 12.64 12.19 11.58 138,671 1.00
6 7.97 11.19 9.88 123,433 1.01
7 12.09 11.81 10.74 130,199 1.01
8 12.39 10.99 9.93 123,223 1.00
9 7.93 10.06 8.90 158,867 1.01
Average 9.21 10.75 9.47 103,748 1.01
P =16 1 15.36 11.48 11.01 5,647 1.01
2 13.15 11.71 11.37 26,263 1.01
3 12.89 13.02 12.59 107,173 1.01
4 8.38 22.60 21.39 209,028 1.01
5 17.08 14.05 14.28 122,902 1.01
6 14.66 13.14 12.55 100,962 1.01
7 13.08 21.37 19.12 135,900 1.01
8 16.63 13.57 14.76 126,161 1.01
9 12.13 23.36 21.57 102,203 1.01
Average 13.71 16.03 15.41 104,027 1.01
P =32 1 21.59 13.57 15.50 3,764 1.03
2 18.20 14.49 14.28 10,784 1.02
3 14.59 20.25 19.78 53,423 1.02
4 13.43 21.14 23.35 154,009 1.01
5 15.95 28.07 29.09 196,821 1.01
6 19.94 21.65 22.19 117,254 1.02
7 17.07 23.23 23.82 90,404 1.02
8 18.44 17.62 20.30 90,322 1.01
9 14.58 23.74 23.31 116,354 1.01
Average 17.09 20.42 21.29 92,571 1.02
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Table 11. SBN mesh adaptation results (no pre-partitioning)

Adaptation Level | Pre-Exec Cut% Post-Exec Cut% MaxSR LoadImb

P=2 1 0.09 4.64 6,974 1.00
2 3.14 6.18 30,538 1.00

3 5.36 6.08 57,724 1.00

4 3.93 3.86 20,646 1.00

5 2.91 5.32 76,893 1.00

6 2.33 4.62 103,544 1.00

7 2.23 5.86 140,904 1.00

8 2.83 6.14 153,735 1.00

9 3.10 6.89 129,374 1.00

Average 2.88 5.51 80,037 1.00

P=4 1 2.26 8.15 4,078 1.01
2 7.22 10.01 26,187 1.00

3 9.44 11.69 64,110 1.00

4 9.16 9.48 46,406 1.00

5 6.60 11.86 149,042 1.00

6 9.83 10.89 94,269 1.00

7 6.58 8.00 50,337 1.00

8 2.79 15.31 170,408 1.00

9 11.53 11.48 85,152 1.00

Average 7.27 10.76 76,665 1.00

P=38 1 6.66 10.77 2,518 1.01
2 13.93 14.98 11,109 1.00

3 15.11 18.16 46,088 1.00

4 14.65 15.83 53,032 1.00

5 11.09 16.48 69,583 1.00

6 11.02 15.91 85,982 1.00

7 13.75 18.13 105,946 1.00

8 12.84 19.51 28,974 1.00

9 15.34 17.35 80,477 1.00

Average 12.71 16.35 53,745 1.00

P =16 1 15.36 20.61 1,767 1.01
2 24.82 25.56 7,259 1.00

3 24.40 27.45 36,031 1.01

4 20.60 22.77 43,943 1.01

5 16.11 24.27 71,736 1.01

6 17.83 22.28 66,211 1.01

7 19.75 25.00 55,361 1.01

8 17.83 25.30 64,796 1.01

9 17.87 21.59 74,316 1.01

Average 19.40 23.87 46,824 1.01

P =32 1 21.59 26.74 1,184 1.01
2 30.35 32.32 4,387 1.02

3 30.06 34.04 8,445 1.02

4 27.28 31.43 41,783 1.01

5 21.35 29.40 42,843 1.01

6 24.04 29.42 42,688 1.01

7 22.35 30.45 41,347 1.02

8 20.59 30.48 37,006 1.02

9 22.19 29.43 32,594 1.02

Average 24.42 30.41 28,031 1.02
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Table 12. Mesh adaptation results using ParMeTiS with PLUM

Adaptation Pre-Exec Post-Exec
Level Cut’, Cut’, MaxSR LoadImb

1 3.16 4.38 10,088 1.02
2 5.34 7.20 25,875 1.02
3 7.27 9.71 58,887 1.03
4 5.24 8.62 134,808 1.03
5 5.77 8.17 153,154 1.04
6 4.70 8.06 122,151 1.02
7 4.47 8.45 159,037 1.02
8 5.31 7.97 132,987 1.01
9 4.18 7.75 130,824 1.01

Average 5.05 7.81 103,090 1.02

P =32
1 4.78 6.45 5,097 1.01
2 7.56 10.05 16,758 1.02
3 10.28 13.13 39,565 1.05
4 8.14 11.60 73,074 1.06
5 7.59 11.13 92,581 1.05
6 6.51 11.60 82,751 1.06
7 6.66 11.43 88,642 1.03
8 6.88 11.39 91,301 1.05
9 6.19 11.66 79,662 1.04

Average 7.18 10.94 63,270 1.04

migrated; (iii) the processing required to determine if load balancing is necessary; and
(iv) the load balancing (communication) messages between processors. These compo-
nents are analyzed in the following paragraphs.

The next vertex v is selected using a priority min-queue. Let V,, be the set of vertices
to be processed at a given processor p and let E, be the set of all internal and border edges
that are adjacent to the vertices of V,. Heap operations like create and insert/delete-min
require O(V,) and O(log V},) time, respectively. The (non-standard) remove operation can
be implemented in O(logV}) time provided a direct pointer to the entry to be removed

is also maintained. For SBN processing, however, (Wgt* 4+ C ommy, + Remapg) must be
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Table 13. Mesh adaptation results with DMeTiS and PLUM

Adaptation Pre-Exec Post-Exec
Level Cut’ Cut’ MaxSR LoadImb
1 4.65 15.70 5,047 1.88
2 19.26 20.50 17,393 2.12
3 21.14 25.26 44 413 2.12
4 17.13 28.21 99,232 1.87
5 29.08 26.46 97,280 1.68
6 25.31 24.38 86,204 1.41
7 20.55 14.17 78,312 1.11
8 10.04 13.08 72,474 1.05
9 9.41 14.18 62,522 1.05
Average 17.40 20.22 62,542 1.59

computed so that the value of QWgt(p) can be maintained and (Comm; + Remap;)/Wgt®
is needed to correctly control the ordering of the SBN priority min-queue. Each of these
calculations require O(4,) time, where 4, is the degree of vertex v. Therefore, the SBN
priority queue (heap) creation requires O(V;, + X ,¢y, 0y) = O(V}, + Ep). Similarly, each
heap insertion, delete-min, and remove operation completes in O(logV, + d,).

The vertex migration in SBN involves first selecting a random set, R, of vertices
from the mesh. The vertex, m € R, with the smallest ACut value is chosen for migration.
Each ACut calculation completes in O(6,) where r € R. Therefore, the time required to

select the initial vertex for migration is

O(>_ 6,) = O(|R| X 8a0g) Where 84y is the average degree of a vertex in the mesh.
rTER

Next, the mesh is searched in a breadth-first manner to choose an additional set,
Vinig, of vertices for migration. In the experiments that were reported, |V, | averages
less than ten to satisfy a load balancing request. Furthermore, a single breadth-first
search almost always finds enough vertices to migrate. The time required to complete

the breadth-first search is approximated by
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O(|Vinig| + Z 0v) = O(|Vinigl + [Vinig| X avg)-

VEVimig
Finally, each vertex to be migrated must be removed from the SBN priority queue.
This operation is needed so that the vertices migrated will no longer be considered for
local processing. Since |Vpni,| + 1 removal operations from the heap are required, the
complexity for this step is
O(([Vinigl +1) x1ogVy + 37 6u) & O(|Vanig| x (10g Vj + davy))-
VEVmigUm
Combining the terms just derived and considering that | R| is a constant, the overall

asymptotic time complexity for job migration is given by

Tnig = O(|Vinigl X (log V} + Gang))-

Each processor must periodically check whether a load balancing operation is to
be initiated or if load balancing messages from other processors are to be processed. If
processors check too frequently, the associated overhead could be too high. On the other
hand, infrequent checks for load balancing activity could lead to excessive idle time. The
following analysis can be used to minimize this overhead without significantly increasing
processor idle time.

If f is the frequency of a processor checking for load balancing activity, we can
expect the response time to process a load balance message to be 2/f on average. Every
time the SBN load balancer is invoked, balancing and distribution messages pass through
3 log P stages of communication. Therefore, the total response time to balance the system
load is (6log P)/f. If Ju, is the average number of jobs processed per unit time, the
threshold MinTh should be set to a value such that load balancing will be triggered when

Qugt(p) < [6log P X Juue/f] to avoid excessive idle time. In other words,
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MinTh > ’VGIOng—XJ,wg“ .

As an example, let P = 32. If an application checks for load balancing activity 60 times
per second (i.e., f = 60) and J,,, = 1000 jobs are processed per second, then MinTh
> 500.



CHAPTER 6
A LATENCY-TOLERANT IPG PARTITIONER

NASAs Information Power Grid (IPG) is an infrastructure designed to harness the
power of geographically distributed computers, databases, and human expertise, in order
to solve large-scale realistic computational problems. This type of a metacomputing en-
vironment is necessary to present a unified virtual machine to application developers that
hides the intricacies of a highly heterogeneous environment and yet maintains adequate
security. For the IPG to be effectively utilized, general purpose utilities are needed that
are designed to execute in low-bandwidth highly distributed configurations. This chapter
describes a latency tolerant partitioner, called MinEX, that is specifically designed for
a distributed environment such as the IPG. MinEX not only balances processor work-
loads but minimizes data movement and runtime communication for applications such
as adaptive meshes executing in a parallel distributed fashion on the IPG. Although the
experimental results presented in this document are conducted using adaptive meshes,
MinEX is a general purpose partitioner and can easily be utilized for a wide variety of

applications.

6.1 Introduction
Many applications can benefit from a distributed infrastructure such as the Infor-
mation Power Grid (IPG). The I-Way experiment [22], for example has identified several

classes of applications that would immediately be applicable. Examples include:

° Desktop coupling to remote supercomputers to provide access to large databases

and high-end graphics facilities.
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° User access to sophisticated instruments through remote supercomputer connec-

tions utilizing virtual reality techniques [21].
) Remote interactions with supercomputer simulations [23, 24].

With each order of magnitude of bandwidth improvement, it is anticipated that
many other applications can benefit from computing grid architectures. Therefore, the
research community has actively explored various approaches as to how computational
grids should be constructed. A comprehensive survey of current technology can be found
in [31]. The Condor system [55] for example, developed to manage research studies at
workstations around the world, is an example of an early success. However, Condor
did not adequately deal with security issues that are important for a general compu-
tational grid implementation. Other grid-based systems that were developed include
Nimrod [1], NetSolve [10], NEOS [14], Legion [39], and CAVERN [53]. Recently the
Globus Project [38] has successfully developed an infrastructure toolkit [32] of general
purpose utilities that are modular and can be utilized to present a transparent virtual
machine environment to the user. Mechanisms exist within Globus to share remote re-
sources, provide adequate security, and allow MPI-based message passing. Due to its
general, portable, and modular nature, Globus was chosen by NASA as the middleware
to implement the IPG.

The goal of the MinEX partitioner is different from that of most partitioners:
Instead of attempting to balance the processing load, the objective is to minimize the
total runtime of the application. This approach counters the possibility that perfectly
balanced loads can still incur excessive communication and redistribution costs while the
application is processed.

This chapter is organized as follows. Section 6.2 defines metrics that will be used

in this and in chapter 7. Section 6.3 gives an overview of the MeTiS partitioner to which
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MinEX will be compared in experiments that are presented. Section 6.4 describes the

MinEX partitioner.

6.2 Definitions

User programs pass the MinEx partitioner a graph as input so that the vertices
of this graph can be assigned among the processors of the grid. Each vertex v of the
supplied graph to has two weights, PWgt, and RWgt,, while each edge (v, w) has two
weights, CWgt,, .,y and CWgt,, ,y. These weights refer respectively to the processing, data
remapping, and communication costs associated with processing a graph vertex. Note
that edges have two weights in case the communication cost between (v,w) and (w,v)
are not equal (e.g., directed graphs.)

To realistically predict performance on a variety of distributed architectures, a
grid configuration graph is also utilized by our new MinEX partitioner. In addition, a
processor to cluster mapping PMap [p] is defined to determine the cluster associated with
each processor p in the grid.

The configuration graph allows a distributed network of multi-computer clusters to
be defined. All processors in a cluster are homogeneous and there is a constant bandwidth
for intra-cluster communication. Proc, > 1 represents the processing slowdown factor
for a cluster relative to the others. Likewise, edges Connect . 4 > 1 represent the inter-
connect slowdown factor when a processor in cluster ¢ communicates with a processor in
cluster d. If ¢ = d, Connect ) represents the slowdown associated with communication
between processors in the same cluster c. Note that if Proc, or Connect(.q) is unity,
there is no slowdown (this represents the most efficient connection in the network).

The following metrics respectively reflect the number of time units required for
computation, data remapping, and communication. Note that these metrics account for

the processor assignment of vertices. This is especially important in a computational
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grid where communication bandwidths between nodes are likely to be much smaller than

on a single multiprocessor machine.

e  Processing Weight (Wgt”) is the computational cost to process vertex v assigned

to a processor in cluster c:
Wgt” = PWgt, X Proc,.

e Communication Cost (Comm)) is the cost to interact with all vertices adjacent to
v but whose data sets are not local to processor p (assuming that v is assigned to
p.) If vertex w is adjacent to v and ¢ and d are the clusters respectively associated

with the processors assigned to v and w, Comm is computed as follows:

Comm) = > CWgt , ) % Connect(,q).
wip

e Redistribution Cost (Remap;) is the overhead to copy the data set associated
with v to another processor from p. Note that the redistribution cost incurred at p
includes the operations of packing data and initiating transmission. The redistri-
bution cost incurred by the processor receiving v is the sum of the communication

time and the cost of unpacking and merging the data into existing data structures:

. RWgt, x Connect( 4 if c#d
Remap,, =

0 if c=d

Assume that c is the cluster to which vertex v is assigned, and d is the cluster
associated with the processor to which v is to be relocated. If the data set for
v is already assigned to p, no redistribution cost is incurred (i.e., Remap) = 0.)
Similarly, if the data sets of all the vertices adjacent to v are also assigned to p, the

communication cost, Commy, is 0.
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CData, denotes the cost to processor p for packing and unpacking data relating to
inter-processor communication. If vertex v is assigned to processor p, processor p
is associated with cluster ¢, and w is a vertex adjacent to v; CData, is computed

as:
CData.;; = (ngt(v,w) + ngt(w,v)) X PrOCC.

The first term within the parenthesis indicates processor p’s cost to pack commu-
nication data in preparation for transmission. The second term indicates the cost
to unpack communication data after receiving transmission.

RData, denotes the cost to processor p for packing and unpacking data sets for
vertex reassignment. If vertex v is assigned to processor p and processor p is
associated with cluster ¢, RDataj is computed as:

RData, = (RWgt(, , + RWgt(, ) X Proc..

The first term within the parenthesis indicates the cost to pack data sets to be
reassigned from processor p to q; the second term indicates the cost to unpack data

sets reassigned to processor p from q.
Additional metrics used in this work are now defined:
Weighted Queue Length (QWgt(p)) is the total cost to process vertices assigned

to p:

Qugt(p) = > (Wgt"+ Comm, + Remap, + CData, + RData,).
v assigned to p

Total System Load (QWgtTOT) is the sum, over all processors, of QWgt(p).
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e Heaviest Load (MaxQWgt) is the maximum value of QWgt(p) over all processors,
and indicates the total time required to process the application.

e Lightest Load (MinQWgt) is the minimum value of QWgt(p) over all processors,
and indicates the workload of the most lightly-loaded processor.

e  Average Load (WSysLL) is QWgtTOT /P, where P is the total number of processors.

° Load Imbalance Factor (LoadImb) represents the quality of the partitioning and

is MaxQWgt /WSysLL.

6.3 Overview of MeTiS

MeTiS is a multi-level state-of-the-art general purpose partitioner. It functions
by first coarsening a graph so that the resulting graph has half the number of vertices
as the original. The coarsening process continues until the graph is small enough to
partition efficiently. After the partitioning is completed, the refinement phase commences
to restore the graph to its original size. Similar to the coarsening process, each refinement
step doubles the number of vertices in the graph. Following each refinement, border
vertices are also considered for moving between partitions utilizing the Kernighan/Lin
algorithm [47]. A border vertex is considered for moving if load balance can be improved
and if the Cuty, remains below a user-supplied constraint.

In some ways MinEX resembles ParMeTiS. For example, both partitioners func-
tion to contract the graph to be partitioned, partition the contracted graph and then
refine the graph to its original size. However, MinEX introduces several novel concepts
that significantly differ from the MeTiS approach. First, the goal is to minimize runtime
and not to increase load balance. In a distributed environment it is possible to have
perfect balance and incur a large cost to move vertices between processors before the
next adaptation can begin. The second concept introduced by MinEX is to contract and

refine the graph incrementally or one vertex at a time. This allows increased flexibility
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in that border vertices can be reassigned at any point. The result should be less reas-
signments since they will be done earlier when the graph is more coarse. Finally, MinEX
considers data set redistribution and latency tolerance in its partitioning logic. These

considerations are particularly important in a distributed environment such as the IPG.

6.4 The MinEX partitioner

MinEX can be classified as a diffusive multilevel partitioner. The multi-level ap-
proach, originally introduced in [41], partitions a graph in three steps: contraction, par-
tition, and refinement. Diffusive algorithms [15] utilize an existing partition as a starting
point instead of partitioning from scratch. MinEX is unique in that it redefines the
partitioning goal to minimizing MaxQWgt rather than balancing processing cost among

partitions.

6.4.1 General design

Similar to other multilevel partitioners, the first step in MinEX is to contract the
graph to a reasonable size. Instead of repeatedly contracting the graph in halves as is
common with other multilevel partitioners, MinEX sequentially collapses one edge at a
time. The advantage of this approach is that a decision can be made each time a vertex
is later refined as to whether it should be assigned to another processor, making the
algorithm more flexible. If |V/| is the number of vertices in the graph, contraction requires
O(|V]) steps which is asymptotically equal to the complexity of repeatedly contracting
the graph in halves.

Once the graph is sufficiently contracted, the remaining vertices are reassigned ac-

cording to the criteria followed by the partitioning algorithm (described in section 6.4.2.)
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The graph is expanded back to its original size through a refinement process. As
each vertex is refined, a decision is made as to whether it should be reassigned. This deci-
sion employs the same criteria that is followed by the partitioning algorithm. Each coarse

vertex reassignment in effect reassigns all of the vertices the coarse vertex represents.

6.4.2 Partitioning criteria
To describe the criteria for deciding whether a vertex should be reassigned from

one processor to another, two additional metrics, Gain and MinVar, need to be defined:

° Gain represents the change in QWgtTOT that would result from a proposed vertex
move. A negative value would indicate that less processing is required after such a
move. The partitioning algorithm favors vertex moves with negative or small Gain

values that reduce or minimize overall system load.

e  MinVar is computed using the workload (QWgt(p)) for each processor p and the

average processing load (WSysLL) in accordance with the following formula:

MinVar = ) (QWgt(p) — WSysLL)”.
p

In other words, MinVar computes the variance in processor workloads from the
average. The objective is to initiate vertex moves that lower this value. Since pro-
cessors with large QWgt(p) values will have large MinVar components, this criterion
will tend to move vertices away from processors that have high runtime require-
ments. AMinVar is the change in MinVar after moving a vertex from one processor

to another. A negative value indicates that the MinVar value has been reduced.

The partitioning decisions are made as follows. For each vertex v, the algorithm
considers all edges to adjacent vertices that are assigned to other processors and computes

the Gain, MinVar, MinQWgt, and MaxQWgt values that would result from moving v to each
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of the adjacent processors. For each possible vertex move, a user-defined function is
called with these values and with the count of vertices assigned to the source processor
(QLen(p).) The user-defined function then determines whether prospective vertex moves
are acceptable. For vertex moves that are deemed acceptable, the user-defined function
is again called to compare prospective moves and determine which one is the best.

A typical strategy is to move the vertex with the smallest Gain where AMinVar < 0.
If Gain > 0, (Gain)?/AMinVar < ThroTTle where ThroTTle is a user specified parameter.
Conceptually, ThroTT1le acts as a gate that limits increases in Gain based upon how much
of an improvement in MinVar can be achieved. A low value of ThroTTle could prevent
MinEX from finding a balanced partitioning allocation; while a high value could converge

at a point where runtime is unacceptable.

Table 14. Expected MaxQWgt with ThroTTle varied

ThroTTle values
Clusters 0 3 16 | 32 | 64 | 128 | o©
1 1993 | 348 | 291 | 300 | 306 | 312 | 324
2 1847 | 748 | 320 | 304 | 305 | 318 | 345
3 2035 | 674 | 375 | 331 | 324 | 326 | 382
4 1868 | 761 | 412 | 352 | 328 | 371 | 425
5 1834 | 835 | 438 | 373 | 359 | 343 | 400
6 2081 | 898 | 481 | 391 | 357 | 361 | 427
7 1884 | 1032 | 505 | 383 | 371 | 369 | 414
8 1944 | 1102 | 531 | 434 | 376 | 380 | 435

Runtimes are presented in thousands of units.

Tables 14 and 15 respectively indicate how varying ThroTT1le affect the expected

application runtimes (MaxQWgt) and load balance quality (LoadImb). The MaxQWgt entries
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Table 15. Expected LoadImb with ThroTTle varied

ThroTTle values
Clusters | 0 3 16 32 64 | 128 | o
1 7.05 | 1.23 | 1.01 | 1.00 | 1.00 | 1.00 | 1.00
2 854|274 | 1.26 | 1.14 | 1.04 | 1.00 | 1.00
3 7.15 | 250 | 1.41 | 1.19 | 1.05 | 1.02 | 1.01
4 6.63 | 2.82 | 1.58 | 1.26 | 1.07 | 1.03 | 1.01
5 6.53 | 3.06 | 1.66 | 1.30 | 1.11 | 1.02 | 1.01
6 7.31 | 3.25 | 1.81 | 140 | 1.08 | 1.02 | 1.01
7 6.68 | 3.74 | 1.84 | 1.33 | 1.10 | 1.03 | 1.00
8 690|392 | 194 | 143 | 1.13 | 1.06 | 1.00

are non-dimensioned values in thousands. These results were obtained experimentally
using an adaptive mesh as a test case and illustrate how altering ThroTTle values affect
MaxQwWgt. Tables 14 and 15 assume a network of 32 homogeneous processors distributed
over one to eight IPG nodes. The inter-cluster interconnect slowdown is assumed to
be a third of the intra-cluster interconnect’s bandwidth. Results show that a ThroTTle
value of sixty four produces the lowest overall MaxQWgt, and that larger ThroTT1le values
improve LoadImb. Experiments with other network sizes using this same graph have
shown that ThroTTle generally converges at values between P and 2P. Note also that
for large values of ThroTT1e, better LoadImb does not necessarily imply lower MaxQWgt.

To increase efficiency, a min-heap is used with vertex pointers to heap locations
to rapidly find the best move and directly remove entries without searching. The user-
defined function computes the heap-key so that vertex moves can be processed in a

desired order. Normally, vertex moves that lower runtime should be processed first.
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6.4.3 Partitioning data structures
Described here are the data structures used by the MinEX partitioner to perform

its multilevel algorithm.

Graph The Graph whose format is {|V|, |E|, vTot, *VMaP, xVList, *EList} where |V| is
the number of active vertices, |E| is the number of edges, vTot is the total vertex
count (including merged vertices,) xVMaP is a pointer to the list of active vertices,
xVList is a pointer to the complete list of vertices, and *EList is a pointer to the
list of edges.

VmaP The list of active vertices (those that were not compressed through multilevel con-
traction.)

VList The complete list of vertices. Each vertex, v, is defined by a VList record as
{PvWgt,,RWgt,, e|, xe, mrg, lkup, *VMaP, «xHeap, bdr} where PWgt, is the computa-
tional cost to process v, RWgt, is the redistribution cost to copy the data associated
with v, |e| is the number of adjacent edges associated with v, xe is a pointer to the
first edge associated with v (subsequent edges are stored contiguously,) mrg is the
vertex that was merged with v during a contraction operation (—1 if not merged,)
lkup is the active vertex that contains v after a series of contractions (—1 if not
merged,) *xvmap is a pointer to the position of v in the active vertex table, xheap is
a pointer to the heap entry that relates to v and represents a potential reassignment
of v, and bdr is a boolean flag indicating whether v is adjacent to vertices assigned
to other processors.

EList The list of edges in the graph. Each vertex v in VList points to its first edge in
EList using *e. Each edge record is defined as {w, CWgt,, ,, CWgt,, )} Where w is

an adjacent vertex to v, CWgt, ,,y is the communication weight associated with this
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edge, and CWgt is the communication weight associated with the edge (w,v).

w,)

CWgt(, ) (e.g., directed graphs). is necessary should Cigt, ) # Cigt, -

Heap The heap of potential vertex reassignments. Each heap record is defined as
{Gain, AMinVar, v, p} which specifies the Gain and AMinVar that would result from
reassigning v to processor p. The min-heap is normally keyed by the MaxQWgt value
resulting from a vertex reassignment but the key is determined by a user-defined
function.

Stack The stack of collapsed edges, (v1,v2) The pushed edges are refined in an order

reversed from the one that they were compressed.

6.4.4 The contraction step
The partitioner uses a contraction heap to order pairs of edges (v, w) assigned to
the same processor. This heap controls the order that vertices are merged and edges

collapsed. Typically, the heap is keyed by negative CWgt(, ) values. The idea is to find

vw
edges with large communication weights. Therefore, a contracted graph with a small edge
cut will formed. The user can override the heap order though a user-defined function.
MinEX passes, RWgt,, PWgt,, and CWgt(,.,) values to this function relative to prospective
vertex pairs. Additionally, MinEX passes a count of the number of vertices from the
original graph that are represented by vertices v and w.

To contract a pair of vertices, a merged vertex M is created and the edge (v, w) is
collapsed. The edges incident on M are created by utilizing the edge lists of vertices v
and w. VMaP is adjusted to contain the newly created vertex M and to remove v and w,

|V| is decremented, vTot is incremented, | E| is increased by the number of edges created

for M, and the pair (v, w) is pushed onto Stack.
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6.4.5 Union/Find algorithm

The contraction is implemented using a set Union/Find algorithm so that edges of
existing vertices remain unchanged. For example, if an existing vertex is adjacent to v,
accesses to its EList will check whether v has been merged. If it has, [kup will quickly
find the appropriate merged vertex. If [kup is not current (lkup > vTot,) the Union/Find
algorithm will search the chain of vertices beginning with mrg to update lkup, so subse-
quent lookups can be done efficiently. Pseudo code describing the Union/Find algorithm

is given in figure 22.

procedure Find (v)

if (mrg == —1) return (v)

if (lkup!= —1) and (lkup <= vTot)
then return (lkup = Find (lkup))
else return (lkup = Find (mrg))

Figure 22. Union/Find algorithm pseudo code.

6.4.6 The partition step

The partitioning is performed when the graph contraction process is complete.
Partitioning is efficient because the number of vertices is greatly reduced. The algorithm
considers every remaining graph vertex to find potential reassignments that will reduce
Gain and MinVar as described in section 6.4.2. All potential vertex reassignments are
added to the min-heap, and executed in heap order. After each reassignment, the heap
is adjusted to reflect the new partition.

Note that the user-defined function is utilized to control the partitioning process.
It has enumerated blocks of code that determine whether a potential vertex reassignment
should be rejected, whether one reassignment is superior to another, and to build the key

that determines the heap order. MinEX passes the changes that would occur to MaxQWgt,
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MinQWgt, Gain, MinVar, and processor queue length (QLen(p) that would result from a
vertex move. These metrics allow the application to have control over the partitioning

process.

6.4.7 The refinement step

The graph is restored to its original size by expanding pairs of vertices in reverse
order from which they were merged. The Stack data structure controls the order. As
pairs of vertices (v, w) are refined, merged edges and vertices are deallocated. The mrg
and l[kup numbers are also adjusted in the vertex table. The VMaP table is adjusted
to delete the merged vertex M and to add v and w, |V] is incremented and vTot is
decremented, and |F| is decreased by the number of edges created for M. After each
refinement, a check is performed to determine whether the partitioning can be improved
by reassigning v or w. When reassignments are made, adjacent border vertices are also

considered.

6.4.8 Latency tolerance

MinEX is able to anticipate the latency tolerance of solvers through a user-defined
function that it calls during the partitioning process. For example, the following process-
ing steps illustrate how an application can be programmed to utilize latency tolerance

techniques to reduce or eliminate communication and data redistribution costs:
1. Initiate send of all data sets to be redistributed.

2. Initiate send of communication data needed by adjacent processors.

3. Process vertices that are not waiting for incoming transmissions.

4. Receive and unpack any remapped data sets destined for this processor.

5. Receive and unpack communication data destined for this processor.
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6. Repeat steps 2 through 5 until all vertices are processed.

This logic proposes a strategy where processors distribute data sets and communi-
cation data as early as possible. Servicing of internal graph vertices can then take place
while waiting for expected incoming messages. As data sets and communication data are
received, additional communications can be initiated and vertices processed.

The user-defined function that MinEX calls contains arguments that are passed
that can be manipulated to accurately model solver operation for any processor p. These

arguments follow:

Pproc, is the total processing weight.

Cunpack, is the processing cost to unpack communication data after transmission.
Cpack, is the processing cost to pack communication data before transmission.
Crcv, is the total transmission cost associated with data communication.
Runpack, is the processing cost to unpack data sets received after transmission.
Rpack, is the processing cost of packing data sets in preparation for transmission.
Rrcv), is the total transmission cost associated with data set reassignment.
QLen(p) is the number of vertices assigned to p.

QSend(p) is the number of vertices that will be relocated from p.

QOwn(p) is the number of vertices originally assigned to p before partitioning.

The user-defined function utilizes these totals to compute the projected QWgt(p)
value for a particular processor. A detailed example as to how these metrics are used is
given in chapter 7. It is this feature that allows MinEX to anticipate the actual solver

performance as it assigns vertices.



CHAPTER 7
MINEX EXPERIMENTAL RESULTS

Limited studies were performed to determine the viability of parallel distributed
computing on the IPG. In one such study [4], latency tolerance and load balancing mod-
ifications were implemented in connection with a computational fluid dynamics problem
to compensate for slower communication bandwidth. Results showed that the applica-
tion actually ran faster under Globus on two IPG nodes of four processors each than on
a single tightly-coupled machine of eight processors. However, this result is clouded in
that asynchronous message passing was supported over the high-bandwidth link but not
within the single platform. In this chapter the unsteady adaptive mesh application that
was introduced in section 5.3 is utilized for experiments. A simulated runtime environ-
ment is used to predict performance on a variety of wide area networks. The number
of IPG nodes, the number of processors per node, and the interconnect slow downs are
parameterized so that general conclusions can be drawn as to when the IPG would be
suitable to solve applications of this nature.

In chapter 5, two different load balancing strategies were investigated with this
application as the test case. The first strategy, called PLUM [60], is an architecture-
independent semi-dynamic framework geared towards adaptive numerical solutions. The
second approach uses a general-purpose topology-independent dynamic load balancer
utilizing Symmetric Broadcast Networks (SBN) that was described in chapter 3. Results
reported in chapter 5 indicate that both PLUM and the SBN approach have their relative

merits, and that they achieve excellent load balance with minimal extra overhead.
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Previous studies with this mesh application under the PLUM framework utilized
a variety of general partitioners such as ParMeTiS [44], UAMeTiS [65], DAMeTiS [65],
Jostle-MS [77], and Jostle-MD [77]. UAMeTiS, DAMeTiS, and Jostle-MD are diffu-
sive schemes designed to modify existing partitions to produce a processor allocation.
ParMeTiS and Jostle-MS are global partitioners which make no assumptions about the
original mesh distribution. Although these partitioners achieve good load balance while
minimizing communication overhead, they fail to consider the cost of moving data be-
tween processors. A unique feature of PLUM is to address this drawback through the
use of an efficient heuristic procedure for redistributing data to assigned processors.

In this study, both communication and remapping costs are optimized by imple-
menting MinEX, that considers computational, communication, and data remapping
costs. This feature integrates the communication and remapping cost into the partition-
ing process. MinEX also redefines the partitioning goal from producing balanced loads
to minimizing MaxQWgt.

Preliminary experimental results, comparing performance using MinEX to parti-
tion the adaptive mesh to those previously obtained from PLUM and SBN, show that
MinEX reduces the number of elements migrated by PLUM, and lowers the percentage
of edges cut by SBN. For example, for thirty-two partitions with our test case, PLUM
showed an edge cut of 10.9% and redistributed 63,270 mesh elements. The corresponding
values for the SBN approach were 36.5% and 19,446. Instead, the MinEX partitioner
values were 20.9% and 30,548. Note that the MinEX partitioner integrates and optimizes
the two important steps of balancing and remapping as part of the partitioning process.

Experiments with MinEX are presented in this chapter to determine the viability
of its latency tolerance features on the IPG. The conditions that are required for the IPG

to be an effective tool for distributed computations are measured with results showing
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that MinEX is a viable load balancer provided the nodes of the IPG are connected by a

high-bandwidth asynchronous interconnection network.

7.1 Computational test case

Many computational problems are modeled discretely as an unstructured mesh
of vertices and edges. To capture evolving features, the mesh topology is frequently
adapted. For an efficient parallel implementation, this requires dynamic load balancing.
In other words, mesh objects will have to be reassigned after each adaptation phase to
rebalance the workload among the processors. It is critical to minimize the overhead as-
sociated with remapping data sets, and to reduce the communication between processors
at the next solution step. These goals are especially important in an IPG context where
communication bandwidths between nodes are likely to be much smaller than on a single
multiprocessor machine.

The computational mesh used for the experiments in this chapter simulates an
unsteady environment where the adapted region is strongly time-dependent. As shown
in section 5.3, a shock wave is propagated through an initial grid to produce the desired
effect. The computational mesh is processed through nine adaptations by moving a
cylindrical volume across the domain with constant velocity. Grid elements within the
cylindrical volume are refined while previously-refined elements are coarsened in its wake.
During the processing, the size of the mesh increases from 50,000 elements to 1,833,730
elements.

The data used for the simulations to be presented in this chapter were generated for
an Euler solver [74] and uses tetrahedral elements [8] to represent the three dimensional
mesh. A dual graph representation of the original mesh is used by our experiments for
load balancing where each tetrahedra of the original mesh is a vertex of the dual graph.

An edge exists between two dual graph vertices if the vertices share a face. Assume that
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units of computational and communication cost are equal. The description of this dual
graph and how it is used in connection with mesh adaptation algorithms was presented
in chapter 5. Recall that each vertex of the dual graph has two weights, PWgt, and RWgt,,
and one edge weight, Cgt , ), corresponding to edge (v, w). PWgt,,, RWgt,,, and CWgt,
refer respectively to processing, data remapping, and communication weights associated
with processing a dual graph vertex.

Table 16 indicates the scalability of this application where the number of proces-
sors, P, is varied from two to 1,024. The data were obtained by simulating the appli-
cation (details presented in section 7.1.1.) The numbers are non-dimensioned MaxQWgt
values in thousands. The first row of the table assumes that maximum latency tolerance
is achieved; the second row assumes that no latency tolerance is achieved. Maximum
latency tolerance is defined as the ability to utilize all available processors to overlap
communication and redistribution costs. Table 16 shows that this application can scale

linearly to over 128 processors, indicating good potential for an IPG implementation.

Table 16. Scalability analysis of the test application

Number of Processors

Latency 2 4 8 16 32 | 64 | 128 | 256 | 512 | 1024

Max. Tolerance | 3777 | 1824 | 1148 | 614 | 324 | 168 | 89 | 72| 51 o7
No Tolerance 4547 | 3193 | 1699 | 1033 | 558 | 302 | 173 | 123 | 109 | 103

Runtimes are presented in thousands of units.
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7.1.1 Experimental study

MinEX was executed with actual application data to simulate mesh processing for
a variety of system configurations. Individual runs simulates networks with a particu-
lar number of processors (P,) number of clusters (C,) ThroTT1le values, and interconnect
slowdowns (I). P was varied from two to 2,048; C' was varied from one to eight; ThroTT1le
was varied to find the optimal value for minimizing runtime; and I was varied to simulate
high-bandwidth cluster interconnections and low-bandwidth wide area network connec-
tions.

Based on performance studies [59, 34], typical communication latency and band-
width slowdowns from integrated clusters to configurations with clusters connected
through a high-bandwidth interconnect are in the range of three to one-hundred. Wide
area network connections are one-thousand to ten-thousand times slower than the in-
ternal intraconnects of a single cluster. For these experiments, is is assumed that the
intra-cluster communication slowdowns to be normalized to a value of unity. Simulations
of inter-cluster communication assume slowdown factors of three, ten, one-hundred, and
one-thousand. To simplify the analysis, it is assumed that individual processors within a
cluster are homogeneous. Processors are also assumed to be divided as evenly as possible

among the clusters.

7.1.2 Summary of results

Table 17 and 18 show results of experimental runs analyzing the effect of varying
numbers of clusters and interconnect slowdowns. The interconnect slowdowns indicate
the slowdown factor relative to intra-communication bandwidth. P is assumed to be
thirty-two. To be consistent with results presented in other tables of this chapter, run-

times are shown in thousands of units. All processors are assumed to be homogeneous.
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Table 17. Expected MaxQWgt with no latency tolerance

Interconnect Slowdowns
Clusters 3 10 100 1000
1 473 473 473 473
2 728 863 1228 4102
3 755 1168 2783 18512
4 791 1361 3667 25040
5 854 1649 5677 53912
6 915 1717 8521 76169
7 956 1915 10958 80568
8 968 2178 11492 93566

Runtimes are presented in thousands of units.

The most optimistic expectation of application processing is that the processing
activity can entirely hide the data set and communication latency. At the other extreme,
the most pessimistic view is that no latency tolerance is achieved. Experiments simulating
both views are conducted to analyze the effect of latency tolerance. Table 17 charts the
experimental results when no latency tolerance is achieved; table 18 assumes maximum

latency tolerance. The following conclusions can be drawn from the results:

e  With greater interconnect slowdowns, the runtimes increase dramatically as ad-
ditional clusters are used. For example, the runtime metric in table 17 is 4,102
when two clusters and an interconnect slowdown of one-thousand is assumed.
The runtime metric is 93,566 when eight clusters are assumed. The ratio,
93,566/4,102 ~ 22.80. Considering the interconnect slowdown of three, the ra-
tio between two clusters and eight clusters is 968/728 ~~ 1.32 which is a much

smaller value. The same pattern holds true in table 18

° The effectiveness of latency tolerant algorithms compared to algorithms without

latency tolerance is determined by measuring runtimes of each approach as the
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Table 18. Expected MaxQWgt with maximum tolerance

Interconnect Slowdowns
Clusters 3 10 100 1000
1 287 287 287 287
2 298 469 763 3941
3 322 548 2386 12705
4 328 680 3297 21888
5 336 768 4369 33092
6 345 856 5044 52668
7 352 893 5480 61079
8 357 1048 5721 61321

Runtimes are presented in thousands of units.

number of clusters and interconnect slowdowns are varied. The relative improve-
ments, from algorithms without latency tolerance to algorithms with latency tol-
erance, are greater when more clusters are employed. This can be verified by
comparing the same rows from table 17 and table 18. For example, consider the
row with six clusters. The difference in runtime comparing latency tolerant al-
gorithms to those with no latency tolerance are 915 — 345 = 570,1,717 — 856 =
861,8,521 — 5,044 = 3,477,76,169 — 52,668 = 23,501 respectively for intercon-
nect slowdowns three, ten, one-hundred, and one-thousand. In contrast, the row
with two clusters indicate improvement in latency tolerant runtimes of 728 — 298 =
430,863 — 469 = 394, 1,228 — 763 = 465,4,102— 3,941 = 161 for the same intercon-
nect slowdowns. In general, the rows that correspond to more clusters show greater
runtime improvement when employing latency tolerance. The same cannot be said
when analyzing columns of the tables where interconnect slowdowns are varied. For
example, the table columns with interconnect slowdowns of one-hundred indicate
improvements in 473 — 287 = 186, 1,228 — 763 = 465, 2,783 — 2,386 = 397, 3,667 —
3,297 = 370,5,677 — 4,369 = 1,308,8,521 — 5,044 = 3,477,10,958 — 5,480 =
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5,478,11,492 — 5,721 = 5,771 respectively for clusters one to eight. The columns
with interconnect slowdowns of ten show corresponding runtime improvements of
473 — 287 = 186, 863 — 469 = 394, 1,168 — 548 = 620, 1,361 — 680 = 681, 1,649 —
768 = 881,1,717 — 856 = 861,1,915 — 893 = 1022,2,178 — 1,048 = 1,130. In this

case, a clear pattern cannot be established.

For this mesh application, Globus over low-bandwidth networks such as the Internet
is not a viable approach assuming current technology. Low-bandwidth interconnec-
tions would have to improve by at least an order of magnitude before the approach
could be seriously considered. At present, applications would have to have lit-
tle runtime communication and data-set remapping for low-bandwidth wide area
networks to be practical. However, Globus could be a viable approach if a high-
bandwidth interconnect (slowdown factor between three and ten) between clusters
is utilized. The first column of tables 17 and 18 comparing one and eight clusters
with an interconnect slowdown factor of three respectively show a slowdown factor
of 2.04 and 1.24. Similarly, the second column of the tables with an interconnect
slowdown factor of ten respectively show slowdown factors of 4.60 and 3.65. These
factors being smaller than the number of clusters indicate a speedup from when

one cluster of one-eighth the number of processors is used.

To evaluate the effectiveness of MinEX versus the case where no partitioning was
done, additional experiments were executed. Consider the case where the inter-
connect slowdown factor is one-hundred and four clusters are used. If latency
tolerance is employed, the partitioning with MinEX led to reduced runtime im-

provements from 17,752 to 3,297. Similarly, if no latency tolerance is employed,
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the improvement in runtime units was from 18,323 to 3,667. Both show parti-
tioning related improvements in runtime by approximately a factor of five. Other

interconnect /cluster combinations show significant improvements as well.

7.1.3 Evaluation of MinEX

This section presented results of experiments that tested the viability of the MinEX
partitioner in distributed computing environments. The experiments also measured the
conditions that are required for the IPG to be an effective tool for such distributed
computations. Results demonstrate that MinEX is a viable load balancer and that the
IPG could be effectively used with similar applications provided that the nodes of the

IPG are connected by a high-bandwidth asynchronous interconnection network.

7.2 MinEX comparisons to MeTiS

Many application classes, such as those that require solutions to computational un-
structured adaptive meshes, require load balancing to be performed while the application
executes to prevent processors from becoming either overloaded or idle. Typically, load
balancing for this kind of application is accomplished through use of a partitioning pro-
gram where a graph is supplied. This graph models the processing and communication
costs of the application. Many excellent partitioners were developed over the years and a
survey of these partitioning approaches is included in [3]. However, the most successful
state-of-the-art partitioners are multi-level [41, 46, 77]. Multi-level partitioners contract
the supplied graph by collapsing edges, partition the coarsened graph, and then refine the
graph back to its original size. Among the fastest and most effective multilevel schemes
is MeTiS [46] for which both parallelized and serial versions are available. Variants of
MeTis can either partition from scratch or can work diffusively with an existing partition.
MeTis produces partitions with low communication cost by minimizing edge cut and can

also optimize data movement required to redistribute the workload by minimizing vertex
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weights that represent the cost of data movement. However, when applied to an IPG

environment, MeTiS has some deficiencies that need to be addressed. Examples of these

are:

In a distributed environment, it is possible to achieve a perfectly balanced process-
ing workload and still incur excessive unbalanced redistribution and communication

overhead.

For heterogeneous configurations, processing and communication weights vary. A
graph with fixed processing, data mapping, and communication edge weights is not

sufficient.

MeTiS can minimize the edge cut or it can optimize data movement. Unfortunately,
it cannot satisfy both constraints in the same invocation. Typically, partitioning

and data remapping are accomplished in two separate steps.

MeTiS cannot anticipate latency tolerance techniques that would be employed by

the application to hide the detrimental effect of low bandwidth.

The novel partitioning scheme, MinEX, presented in chapter 6 addresses the lim-

itations of existing partitioners. The advantages of MinEX are itemized in the bullets

that follow:

MinEX has the partitioning goal to minimize the total runtime of the application.
This objective is different from that of other partitioners and counters the possibility

of achieving balanced loads with excessive communication.

MinEX utilizes a configuration data structure that models IPG speed parameters
such as the number of nodes, the number of processing clusters, and the interconnect
slowdowns. The graph being partitioned is mapped onto this data structure to

accommodate a highly heterogeneous environment.
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° MinEX calls a user supplied function as partitioning decisions are made. This
function is used to model the latency tolerance of the application solver and assist

in partitioning decisions.

To evaluate MinEX, a solver for the classical N-body problem is implemented and
integrated with both the MinEX and MeTiS partitioning schemes. In this application,
dynamic load balancing in a multi-computer environment is necessary to optimize effi-
ciency. The N-body solver uses a modified Barnes & Hut algorithm [5] for producing a
solution. Configurations of thirty-two processors distributed over up to eight clusters are
simulated with interconnect slowdowns varied between three and ten-thousand. Results
show that in a simulated IPG environment, MinEX dramatically reduces the runtime
requirements of the application as compared to results obtained when using MeTiS.

At this point, the time required to partition a graph is not optimized to the level
of MeTiS and the codes are not yet parallelized. Our measurements, therefore, focus on
application efficiency and not partitioning time. Specifically, the metrics LoadImb and
MaxQWgt, described in section 5.3.1 will be measured and compared. These metrics are
excellent predictors as to how both approaches will perform in a distributed environment.
Recall that the motivation for MinEX development is to optimize the partitioning process
in such an environment.

This remaining sections of this chapter are organized as follows. Subsection 7.2.1
introduces the N-body problem that is implemented. Subsection 7.2.2 discusses the
latency tolerance functions that interface with MinEX. Subsection 7.2.3 describes the

experimental study, analyzes the results, and draws conclusions.

7.2.1 The N-body application
The N-body application is the classical problem of simulating the movement of a

set, of particles based upon gravitational or electrostatic forces. Many applications in the
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fields of astrophysics, molecular dynamics, and fluid dynamics can utilize N-body solvers.
The basic solution involves calculating the velocity and position of each particle, b, at
discrete time steps. At each step, there are b? pairwise interactions of forces between
bodies. Of the many N-body solutions that have been proposed, the Barnes & Hut
algorithm [5] is probably the most popular. The approach uses a divide-and-conquer
strategy to approximate the force exerted on a body by a cluster of bodies that are
sufficiently distant with the center of mass position and total quantity of mass in the
cluster. In this way, the total number of force calculations are greatly reduced. The
algorithm’s first step is to recursively build a tree of cells in which the bodies are grouped
by their physical position. By traversing the tree, one can be determine the distance
between any pair of cells. Normally the decision as to whether pairs of cells are close or
far is made based on dividing the greatest distance between two bodies in a cell by the
distance between the center of mass positions of the cells. If the result of the division
is greater than a user-defined parameter ¢, the cells are considered close and all of the
pairwise force calculations are to be performed. An example of a parallel Barnes & Hut
implementation using message passing is described in [78] and then later refined in [56].
In this chapter, the Barnes & Hut approach is modified to integrate the MinEX and
MeTiS partitioners with the solution.
The application framework

The pseudo code in figure 23 gives an overview of the framework for implementing
the N-body application. At each time step adaptation, a new tree is constructed to
allocate the N bodies to cells. Before the solver is called, a check is performed to determine
whether the processor load is balanced. A partitioner is used to improve load balance
if necessary. After the load is balanced, the N-body solver computes the new positions

of each of the bodies. The last step of each adaptation is to output statistical and
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visualization data. These steps are continually processed until all of the adaptations are

completed.

Output Initial N-body Visualization Data
Do

Create Barnes & Hut N-body Tree

If Processor Load is Unbalanced

Call Partitioner

Call N-body Solver

Output N-body Statistics

Output N-body Visualization Data
Until all adaptations are processed

Figure 23. N-body framework.

N-body tree creation

The first step of processing the N-body problem is to recursively build a tree of
cells. Starting with an empty tree, the first particle is inserted into an initial leaf cell.
Subsequent particles are also placed into this cell until the cell is eventually filled. At
this point, an internal cell is allocated with eight pointers for each possible octant. The
bodies are then inserted into subtrees at the next level. Figure 24 illustrates this concept
showing an internal cell divided into eight geographic octants. Both the spatial and
tree representations are shown. The cell’s center of mass position is used for subsequent
searches of the tree. Traversal direction is determined by the octant where a particle
resides relative to this center of mass position In this implementation, up to eight particles
can reside in a single leaf cell.
N-body solver

The pairwise force calculations between the particles are calculated using the New-

tonian gravitational formulas. For completeness these formulas are itemized:
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Figure 24. A two level oct-tree.

< Xp,¥b, Zp > is a vector representing the coordinate position of particle, b.

I'(b1,b2) IS a scalar representing the distance between particles b1 and b2 computed as:

T'(b1,62) = \/(%1—%2)2 + (Y51 —b2)? + (251 — 22)?)

Fioib2) = Gmbl(;'(‘:fi’;‘)’)l;x“) indicates the gravitational force between bodies in the z

direction. G is the gravitational constant and ms; and myy respectively indicate the
masses of particles b1 and b2. Note that a small smoothing constant is added to 7 42
to prevent division by zero. The gravitational forces between bodies in the y and z
directions are similarly defined.

a, =< ab, a?, aP > is an acceleration vector computed using the formula F' = ma. Accel-
eration is integrated to compute a velocity vector v, =< v}, v), v} >. A second integration
is performed on the velocity vector to compute the particle position 7 59) at the next
time step. Integration is performed using a leap-frog method. If p,, v,, and a,, respec-

tively indicate position, velocity, and acceleration at time step n, and ¢ is the size of the

time step, the leap-frog calculations are:

Vint1)/2 = Un + Gn /2, Pyt = Pn+ Vmg1)2 ¥t Vng1 = Vng1)/2 + Any1 ¥ /2.
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Processing

The N-body solver is implemented using a message passing model. The pseudo
code in figure 25 indicates solver execution at each processor. The processing steps are
designed so that the application can minimize the deleterious effects of low bandwidth.
The logic proposes a strategy where processors distribute data sets and communication
data as early as possible so that processing can be overlapped with communication.

The solver achieves additional latency tolerance by further reducing communication
when possible. For example, the position and mass of a particular particle only needs
to be communicated once to a remote processor to which a group of close bodies are
assigned. Similarly, if far cells are assigned to the remote processor, the center of mass
and position of the local cell needs be transmitted only once. Therefore, for each queued
particle cell, at most two communications are necessary to each remote processor. A
second reduction of communication recognizes that position data need not be received
for particles that were relocated from that processor during the same time step. A MinEX
calling parameter automatically accommodates this second optimization.
Partitioning

When the tree creation phase of the algorithm is completed, a graph is constructed
that is presented to the partitioners. The partitioners utilize this graph to divide the
workload among the processors of the grid. Each vertex, v, of the graph corresponds to
a leaf cell C, in the N-body tree and has two weights, PWgt, and RWgt,. Each edge (v, w)

has two weights, CWgt,, ., and CWgt, These weights refer respectively to processing,

w,v)"
data remapping, and communication costs that will be incurred when the solver processes
C,. The total time required to process the vertices assigned to a processor p must take

into account all of these metrics as they are defined in the bullets that follow:
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Send all particles that are to be reassigned

For each data set that is relocated to this processor
Unpack and store the data
Calculate force interactions with local particles

For each particle assigned to this processor
Transmit position & mass data

For each particle assigned to this processor
Calculate force interactions with local particles

For each particle assigned to this processor
Receive particle communication data
Calculate force interactions using data received

For each particle assigned to this processor
Integrate to determine new particle positions

Figure 25. Solver processor pseudo code.

PlWgt, is the number of computations that are executed by the solver to compute the
new positions of the particles residing in C',. To compute this weight, the following
metrics are defined:

|Cy| represents the number of particles in C,.

Close? is the count of particles in cells close to C,,.

Far, is the count of cells that are far from C,,.

Using these metrics,
PWgt, = |C,| x (|C,| — 1 + Close’ + Far, + 2).

The processing weight PWgt, includes the pairwise force calculation between the
internal |C,| bodies in C,, the external particles that are in cells close to C,, the
single force calculations using the center of mass locations of distant cells, and two
calculations for the double integration needed to determine velocities and positions

of the bodies at the next time step.
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° RWgt, defines the cost of relocating cell C), from one processor to another. Its weight

is set to |C,| since each of the particles in the cell must be communicated.

e  CuWgt(,,) represents the communication cost between cells C, and C,,. CWgt, ,, is
set to a value of unity if C, is far from C,. If C, is close to C,, CWgt, ,y = |Cyl.

This metric models the amount of communication required between cells.

7.2.2 N-body interface to MinEX

The MinEX partitioner expects the calling program to supply a function to assist in
the partitioning and to achieve latency tolerance. This function enables the partitioning
to be tailored to the performance of the solver. The user function determines the criteria
for a promising vertex move, compares whether one potential vertex move is better to
another, controls the order that potential vertex moves are processed, establishes the
order in which vertices are contracted, and projects anticipated runtime should a vertex
move be executed. The function utilizes a switch statement to enumerate the appropriate
sections of code. Each of these enumerated blocks of code are described in this section.
Criteria for promising moves

The N-body user-defined function is called with QLen(p), Gain, MaxQWgt, MinQWgt,
A MinVar. These metrics are used to establish the criteria for whether a vertex move

should be rejected. The following represent conditions that will reject potential moves:
e A vertex move that will result in a processor having an empty queue ( QLen(p) = 0.)

° A vertex move with excessive increase in Gain. Excessive increase is when

(Gain)?
AMinVar

> ThroTTle where ThroTTle is a user-defined parameter. In our expe-
rience, if ThroTTle is set too low, the partitioner might not achieve a balanced
load. On the other hand, if ThroTT1le is set too high, the partitioner runs slow

and may result in a balanced load but with sub-optimal runtime. In experiments
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conducted, it was observed that ThroTTle generally converges between the values

of P and 2P.
) A move that increases MaxQWgt.
° A move with that will not change MaxQWgt but will decrease MinQWgt.

e If no change is anticipated to either MinQWgt or MaxQWgt, moves will be rejected
that do not significantly reduce A MinVar. In experiments conducted, A MinVar

was required to be reduced by at least 1 percent.

Evaluating vertex reassignments

MinEX calls the user-defined function to compare pairs of vertex moves. The
metrics QLen(p), Gain, MaxQWgt, MinQWgt, A MinVar relating to each move are passed
by MinEX for a criteria for comparison to be established. A potential vertex move is

considered superior to another if:
e  The resulting MaxQWgt is lower.

° If Gain is negative and the impact upon MaxQWgt is equal, the best move will result

in the greatest increase in MinQwWgt.

e  When neither MaxQWgt or MinQWgt are impacted, the vertex move with the lowest

resulting Gain value is the best.

° If none of the criteria is satisfied, the best move is the one that reduces MinVar the

most.

Vertex reassignment order
MinEX utilizes a min-heap of potential vertex moves to be processed. The key of

this heap controls the order of vertex reassignment. The user-defined function is called
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with the same metrics as described in the previous two paragraphs. These metrics are
used to build the heap-key used in the experiments to be presented in section 7.2.3. The
key that is computed is determined by the formula, (GainBias + Gain) + MaxQWgt X
RunBias. GainBias and RunBias are constants that allow for proper scaling of the key.
The idea is to prioritize vertex moves first by MaxQWgt and then by Gain.

Order of graph contraction

Similar to the ordering of processing vertex swaps, the Graph Contraction order
is also controlled using a min-heap. Metrics are passed to the user-defined function to
provide information relating to edges (v,w) that are to be collapsed. These metrics
are PWgt,, RWgt,, CWgt(yw), CWEt(w,v), and Color(,,). Color(,,) is the total number
of vertices represented in vertices v and w. Additionally the user-defined function has
access to the total number of vertices in the graph, |v|, before contraction and the current
number of vertices in the graph, |v.|.

The heap-key that is used to control the order of graph contraction is Color, ) X
(Jv|=[ve|) —CWgt, ) —CWgt(, ). This order favors collapsing of edges with high edge cuts
but tries to minimize the chance that the vertices the original graph are not represented
by a small number of meta-vertices.

Latency tolerance

It is the responsibility of the application to determine the percentage of latency
tolerance that can be achieved since this is dependent upon the nature of the application
solver. This function is called to determine the expected QWgt(p) value that will result at
a given processor after a vertex reassignment. Data supplied by MinEX to the latency tol-
erance function include the metrics Cunpack,, Cpack,, Crcv,, Runpack,, Rpack,, Rrcv,,

Pproc,, QLen(p), QSend(p), and QOwn(p) and are are defined in section6.4.8. Another
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Metric, QRcv(p) that is computed indicates the number of N-body cells to be relocated
to processor p. QRcv(p) = QLen(p) + QSend(p) — QOwn(p).

Two sets of calculations are derived to mathematically model the operation of the
solver. The first calculations are used to estimate the reduction in communication mes-
sages that are achieved by eliminating duplicate transmissions. The second calculations
estimate the how much processing can likely be overlapped with communication. These
calculations are described in the following paragraphs.

To accommodate the solver’s attempt to minimize communication messages, the
Cunpack,, Cpack,, and Crcv, values must be recomputed. For example, the original
values of these metrics assume that every N-body cell is communicated to every other
N-body cell. It doesn’t take into account that the communication need be done only once
to another processor to which a queue of cells are assigned. To recompute this value,
observe that Cunpack is the total number of unpack operations that are performed in
connection with received communications. Before describing the calculations required to

recompute Cunpack,, the following terms need to be defined;
|C| is the average number of particles in a cell.
Close, is the total number of cells received from close cells in remote processors.

Remote, is the number of cells assigned to remote processors other than p. Note

that Remote, is the difference between total vertices in the partitioning graph and

QLen(p).

ProbC, is the probability that a remote cell is close to a cell in processor p. Similarly,

ProbF, is the probability that a remote cell is far from a cell in processor p.

ProbC; is the probability that a remote cell is close to z cells in processor p.
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The original Cunpack, can be determined by the equation:
Cunpack, = QLen(p) x Remote, + (|C| — 1) x Close,.

The first term indicates the total number of separate communication messages
received. The second term indicates extra communications needed for each of the particle

positions of close cells that are to be transmitted. Using this formula:

Cunpack, — QLen(p) x Remote,

Close, = \C| 1

After solving for Close,: ProbC,, ProbF,, and ProbC; can be determined:

Close,
" QLen(p) x Remote,

ProbF, =1 — ProbC,

QLen(p)!
(QLen(p) — z)!x!

The recomputed value of Cunpack, is:

ProbC; = (ProbC,)?(ProbF,)enr)-=

C| — 1) x Close,ProbCiten(r) Wen(p) (propg, )i
(| | ) P P +‘C| XC].OSGP Z ( ro P)
ProbF,

=1

Cunpack, = Remote, + _—
Packy P i X ProbF,

Note that the second term subtracts one from |C| because the count of those near
cells are already included in the first term. The third term represents those remote cells
that transmit both to local cells that are far and also the individual N-body data to those
local cells that are near. The division by ProbF, is needed because all of the Close, cells
are known to be close. Once the revised Cunpack, value is calculated its ratio to the
original value is multiplied by Crcv to project its value. Observe that a similar analysis
as just described is used to recompute Cpack,.

To estimate the amount of overlap between communication and processing first

observe that it is not possible to hide communication with the processing associated with
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packing and unpacking (Cpack,, Cunpack,, Rpack,, and Runpack,.) The solver performs
force calculations as N-body data are remapped that relate to the incoming particles and
the local close bodies. The number of cells involved in these calculations is be estimated

by:

{2QRcv(p) x (QOwn(p) — QSend(p)) + QRcv(p)(QRcv(p) — 1)} x ProbC,

The ratio between this and total cell processing, QLen(p) X Remote,, is multiplied by
Pproc, to predict the amount of processing accomplished during data distribution. The
remaining amount of processing can be overlapped with data communication. If HideR,
and HideC, represent the respective amounts of processing hidden by data redistribution

and communication, the total estimate of QWgt(p) is:

Rrcv, +1 Crcv, +1
QWgt(p) = Cpack,+Cunpack +Rpack,+Runpack;+Max +Mazx
HideR, HideC,
Using the estimates for latency tolerance just derived, actual solver operation was pro-

jected to within 5 to 10 percent in experiments that were conducted.

7.2.3 Experimental study

In the experimental study that is presented in this chapter, a message passing
environment is simulated in which the actual N-body solver is executed and where the
results of two adaptations are averaged. The test case consists of 1,024 bodies. By
varying the grid definition file, the parameters are varied that predict performance on
a variety of grid configurations. Individual runs simulate networks with the varying
number of clusters (Clusters) and interconnect slowdowns (/). To simplify the analysis
in our experiments, the number of processors is set to a value of thirty-two and individual
processors are assumed to be homogeneous and divided evenly among from one to eight

clusters.
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Table 19. Expected runtimes (MeTiS)

Interconnect Slowdowns
| Clusters | 3 | 10 | 100 | 1000 | 10000

1 16 16 16 16 16
16 23 91 825 8228
16 23 109 1017 10152
16 23 119 1115 11141
16 23 123 1161 11601
16 23 128 1205 12046
16 23 131 1244 12431
8 16 23 132 1253 12526
Runtimes are presented in thousands of units.

N O O s W N

Based on performance studies [59], typical communication latencies and bandwidth
slowdowns from integrated clusters to configurations with clusters connected through a
high-bandwidth interconnect are in the range three to one-hundred. Wide area network
connections are one-thousand to ten-thousand times slower than the internal intracon-
nects of a single cluster. To predict performance on a wide range of possible grid envi-
ronments, we have run experiments with inter-communication slowdown factors of three,
ten, one-hundred, one-thousand, ten-thousand. Note that the intra-cluster communica-
tion slowdowns are assumed to be normalized to a value of unity.

The results of partitioning with the N-body application and the MeTiS partitioner
are shown in tables 19 and 21. Similarly, results for experiments using MinEX are shown
in tables 20 and 22. Tables 19 and 20 plot project runtimes in thousands of units.
Tables 21 and 22 plot the load balance that was achieved during the same experiments.
Recall that load balance (LoadImb) is computed using the formula MaxQWgt/WSysLL.
Additionally, note that load balance relates to values actually achieved by the running of

the application. It does not indicate the actual projected imbalance by the partitioners
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Table 20. Expected runtimes (MinEX)

Interconnect Slowdowns
| Clusters | 3 | 10 | 100 | 1000 | 10000

1 15 15 15 15 15
15 15 40 304 3645
15 15 38 331 3386
16 15 51 372 3695
15 15 52 396 4115
16 16 74 391 4360
15 16 46 393 4315
8 16 15 70 405 4090
Runtimes are presented in thousands of units.

N O O W N

before the application was executed. The following conclusions can be drawn from the
results in tables 19 through 22:

On fast interconnect systems (slowdown factor of three,) MeTiS and MinEX perfor-
mance is comparable, although MinEX has a slight advantage in both resulting runtimes
and load balance. The same conclusion can be stated for single cluster systems as repre-
sented by the top rows in the tables.

Observing the second column of the tables (slowdown factor of ten,) notice that the
application using MinEX was able to completely hide the effects of the slower bandwidth.
MeTiS, on the other hand showed a 50 percent performance drop when compared to the
results shown in the first column of the table 19. This demonstrates that the latency
tolerance features of MinEX are effective.

Looking at the results of third to fifth columns (slowdown factors of one-hundred,
one-thousand, and ten-thousand respectively,) observe that the advantages of MinEX
over MeTiS increase dramatically. For example, with eight clusters and a slowdown factor

of ten-thousand, MinEX performance relative to MeTiS shows a 12, 526, 416/4, 390, 389 =
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Table 21. Expected load balance (MeTiS)

Interconnect Slowdowns
| Clusters | 3 | 10 | 100 | 1000 | 10000

1 1.07 | 1.07 | 1.07 | 1.07 | 1.07
1.07 | 1.07 | 2.08 | 2.49 | 2.37
1.07 | 1.08 | 2.09 | 2.23 | 2.24
1.07 | 1.08 | 2.07 | 2.18 | 2.18
1.07 | 1.08 | 2.05 | 2.14 | 2.14
1.07 | 1.08 | 2.04 | 2.12 | 2.12
1.07 | 1.08 | 2.09 | 2.17 | 2.17
1.07 | 1.08 | 2.02 | 2.09 | 2.10

0 ~J O U i W N

Table 22. Expected load balance (MinEX)

Interconnect Slowdowns
| Clusters | 3 | 10 | 100 [ 1000 [ 10000

1 1.03 | 1.03 | 1.03 | 1.03 1.03
1.04 | 1.04 | 1.17 | 1.22 1.26
1.04 | 1.06 | 1.10 | 1.16 1.14
1.041.03 | 1.28 | 1.11 1.10
1.03 | 1.03 | 1.24 | 1.12 1.10
1.05 | 1.06 | 1.52 | 1.07 | 1.16
1.04 | 1.06 | 1.16 | 1.09 1.12
1.05 | 1.03 | 1.37 | 1.05 1.12

0~ O U i W N

3.06 times improvement. MinEX also demonstrates superior resulting load balance than
what is shown for MeTiS (1.12 percent versus 2.10 percent in tables 22 and 21.)

Both MinEX and MeTiS show a trend towards a slight loss of performance as
more clusters are added. The loss is insignificant with smaller slowdown factors (less
than 1 percent for slowdown factors three and ten.) With larger slowdown factors the
loss still relatively minor (18 percent with a slowdown factor of ten-thousand and MinEX

used.) This demonstrates that configurations with more clusters of less processors per
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cluster can be viable for running applications that are programmed to maximize latency

tolerance.

7.2.4 Conclusions

Using a solver that was developed for the N-body experiments conducted, the
performance of MinEX was compared to MeTiS, a popular state-of-the-art multi-level
partitioner. Results show that while MinEX produces partitions of only slightly bet-
ter quality to MeTiS on single cluster configurations; on grid configurations with low-
bandwidth communication, partitions produced by MinEX yield application runtimes
that can be up to three times faster. These results demonstrate the benefits and feasibil-
ity of mapping the multiprocessor configuration graph onto the graph to be partitioned
and incorporating latency tolerance into the partitioning process; they also illustrate the

suitability of MinEX for operation in grid environments.



CHAPTER 8
DISCUSSION AND FUTURE RESEARCH

In this dissertation, three portable topology-independent dynamic load balanc-
ing algorithms were presented based on Symmetric Broadcast Networks (SBN). These
three SBN-based algorithms were experimentally compared to other poplular dynamic
balancers (e.g., Random, Gradient, Sender Initiated, Receiver Initiated, Adaptive Con-
tracting, and Tree Walk) with results showing that the new algorithms compare favorably.
The SBN Basic algorithm was further modified to work with adaptive mesh applications
where dynamic load balancing algorithms are not often used. By establishing a global
view of the dynamic mesh, these adaptations prove that SBN load balancers can be ef-
fectively used with this application class and have the advantage of reducing data set
remapping, although larger communication costs are incurred. This trade-off is accept-
able for applications dominated by a high cost of data set redistribution.

SBN portability is established by its successful execution on two state-of-the art
commercial machines (the IBM SP2 and the SGI Origin 2000) without any changes
to any of the code being necessary. SBN’s topology independence was also illustrated
by implementing a variant of the Basic algorithm that is specifically designed for the
hypercube. Further utilization of reflective gray code mappings whould allow the SBN
approach to be easily ported to other architectures.

Another contribution is the SBN Heuristic Variant algorithm which, based on a
mathematical model, achieves a significant reduction in runtime communication over the

Standard and Hypercube variants.

136
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A novel partitioner, called MinEX, has also been introduced in this dissertation
which is designed specifically for a distributed runtime environment such as NASA’s
Information Power Grid (IPG). Results comparing MinEX to the fast and state-of-the-
art MeTiS partitioner conclude that MinEX achieves superior quality partitions and
reduces application runtime requirements in such an environment.

Areas of future research are to optimize and parallelize the MinEX codes so that the
runtime required for partitioning is competitive with MeTiS. Subsequently, the MinEX
partitioner will be packaged to encourage a widespread distribution and acceptance.
A further study of the relationship between the MinVar and Gain metrics discussed
in section 6.4.2 should result in practical conclusions that will simplify the use of the
partitioner and improve its efficiency. Investigation of latency tolerance techniques will
also be helpful to facilitate the implementation of more applications on geographically
separated distributed computing environments. Another area of related research is to
develop a general purpose tool that can be used to quickly simulate IPG environments

by varying heterogeneity and wide area interconnect parameters.
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