
Review 07

Biologically Important macromolecules (large molecules)

- O Carbohydrates C(H₂O)_n
- Proteins
- **8** Nucleic Acids

phospholipids: diglyceride with very polar, phosphate-containing group attached to third bonding site on glycerol result is molecule very polar at "head" and very non-polar along "tail"

Phospholipids form

- ☆ monolayers
- ☆ micelles
- ☆ micelle bilayers
 effectively isolate polar inside from polar outside by creating
 hydrophobic barrier between the two
 model for cell membrane, which separates living inside from
 non-living outside

Cells

- 1665 Robert Hooke--coined term "cell"
- 1838 Matthias Schleiden--all plant tissues composed of cells
- 1839 Theodor Schwann--all life composed of cells
- 1858 Rudolf Virchow--all life comes from pre-existing life Cell Theory
 - 1. The cell is the smallest unit of life.
 - 2. All cells come from pre-existing cells.

General types of cellular construction:

Eukaryotic	Prokaryotic
• complex in organization	• simple in organization
• organelles	• no organelles
 several chromosomes w/in a nucleus tiny 	 one chromosome within "nu- clear region" cytoplasm tinier
Examples: plants, animals, fungi, protists	Examples: bacteria, blue-green bacteria (cyanobacteria)

Review 07, con't

We'll be looking primarily at EUKARYOTIC cells this term. Sizes measured in microns (μ) = micrometers = 10⁻⁶ meters IF STRETCH A METER FROM HERE TO PORTLAND, smallest prokaryote \approx 0.5 μ to 1.1 μ (THE GREEN POSTERBOARD) typical eukaryote \approx 10 μ to 30 μ in diam. (ROUGHLY THIS LECTURE HALL)

Microscopes

<code>light</code>: up to 1500X mag; 200 nm (0.2 μ) resolving power look at live or dead; stained or not; inside or outside; whole or sections scanning e.m.: up to 500,000X mag; 0.4 nm (0.004 μ) resolving power look at surfaces of dead, dried, treated specimens; small whole or broken open